

PLAYING TOPOLOGICAL PHYSICS WITH MICROWAVE RESONATORS

Fabrice Mortessagne

Waves in Complex Systems team

- Flexible experimental platforms in microwaves or optics
- Random Matrix Theory, effective Hamiltonian formalism, numerical simulations
- Complex geometries : multimode optical fibres, 2D or 3D microwave cavities
- (dis)ordered lattices: coupled µwave resonators, photo-induced/laser-written photonic structures
- Wave chaos
- Light diffusion Anderson localization
- Quantum fluids of light
- Artificial Dirac materials
- Topological photonics

Waves in Complex Systems team

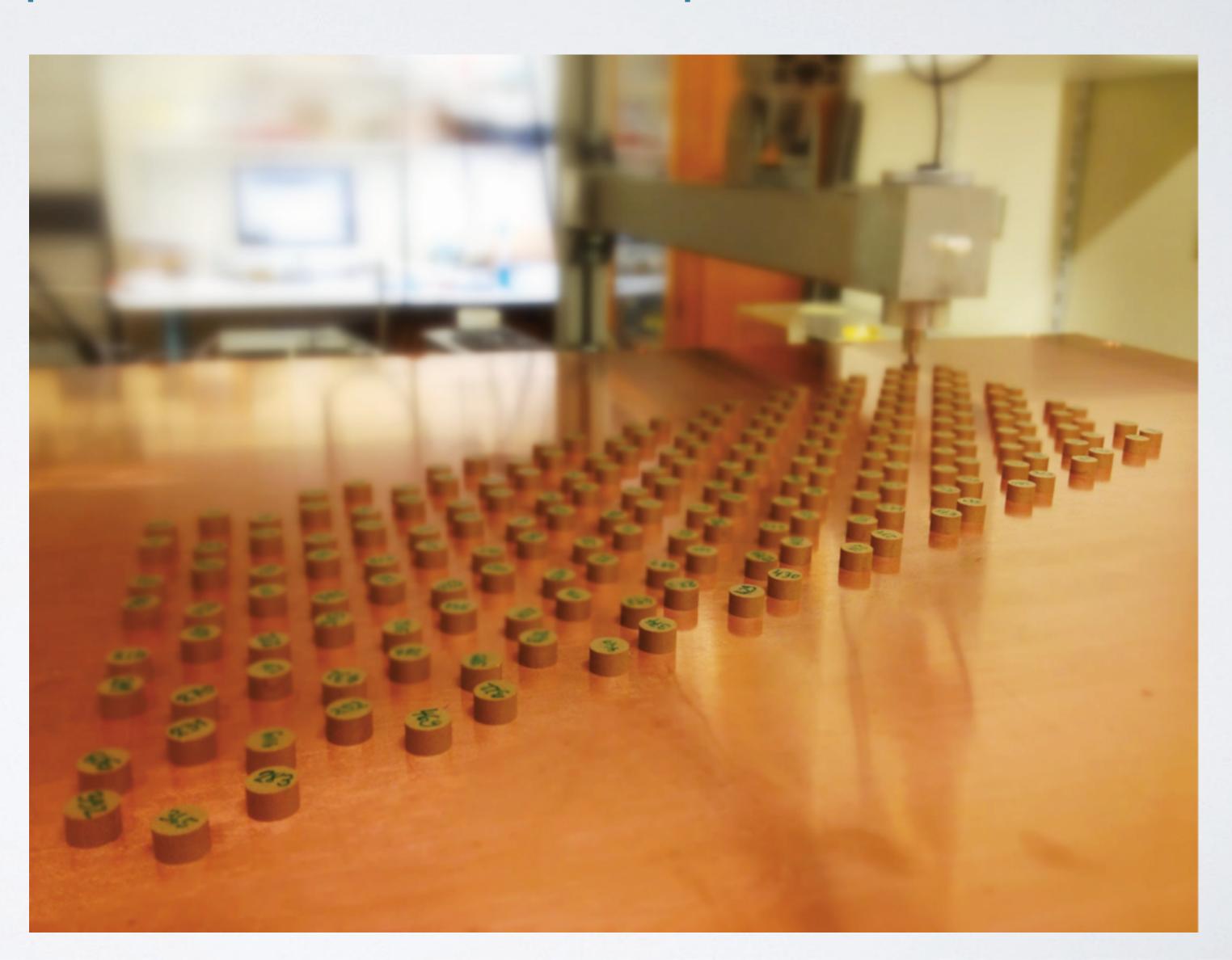
- Flexible experimental platforms in microwaves or optics
- Random Matrix Theory, effective Hamiltonian formalism, numerical simulations
- Complex geometries : multimode optical fibres, 2D or 3D microwave cavities
- (dis)ordered lattices: coupled µwave resonators, photo-induced/laser-written photonic structures
- Wave chaos
- Light diffusion Anderson localization
- Quantum fluids of light
- Artificial Dirac materials
- Topological photonics

Outline

- 1. The playground: coupled microwave resonator lattices dielectric resonators, TE modes, evanescent coupling, LDOS & eigenstates
- 2. Initiatory game: topological phase transition in strained graphene Berry phase, merging of Dirac points, Zak phase, manipulation of edge states
- 3. 'Flat games': Lieb lattice & Pseudo-Landau levels flat band, sublattice polarization, gigantic pseudo-magnetic field, supersymmetric oscillator

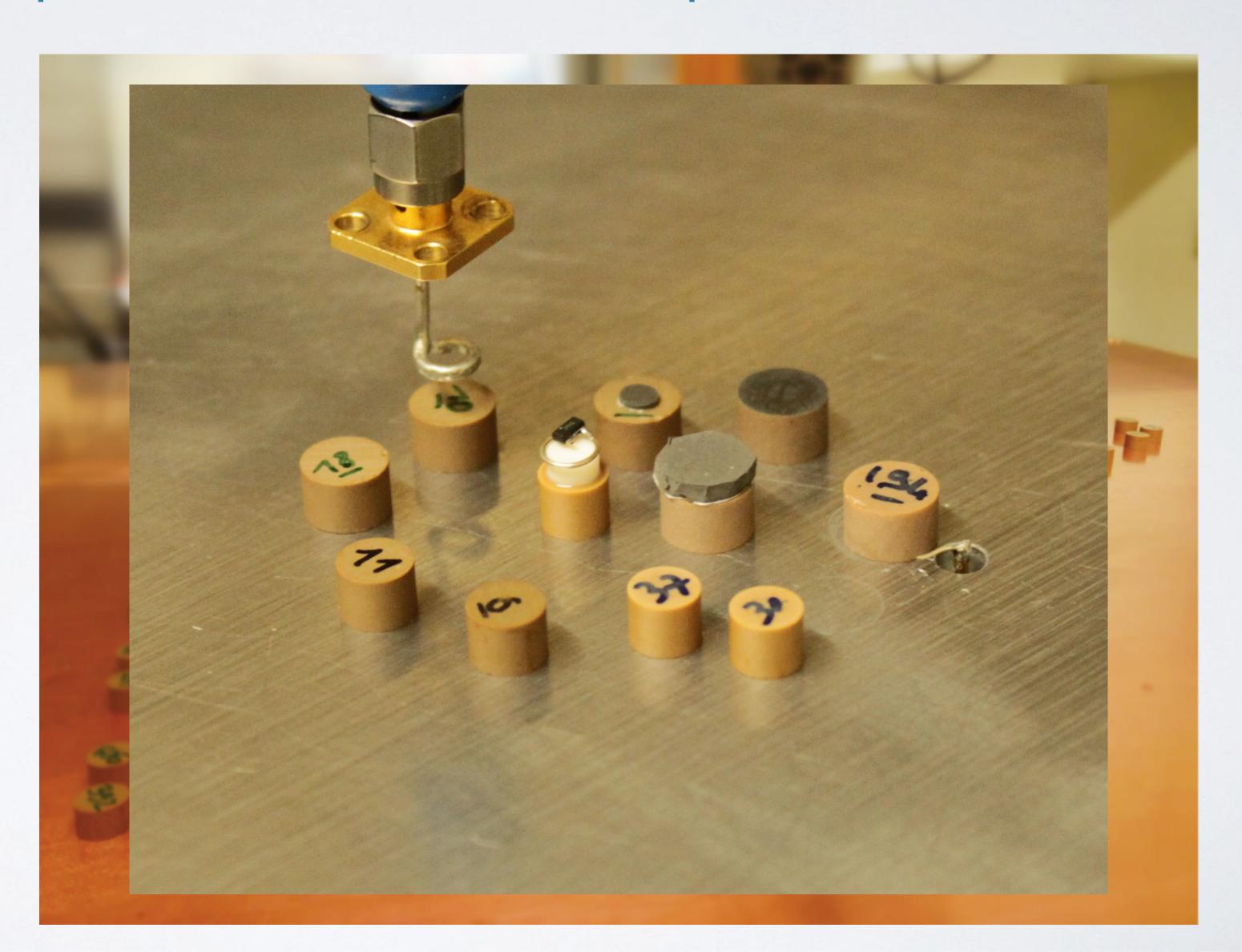
Experimental setup

- Vector Network Analyzer
 (@ 0-24 GHz)
- coaxial SMA 3.5mm
 connectors
- 'kink' and 'loop' antennas: TE polarization
- dielectric resonators sandwiched between metallic plates



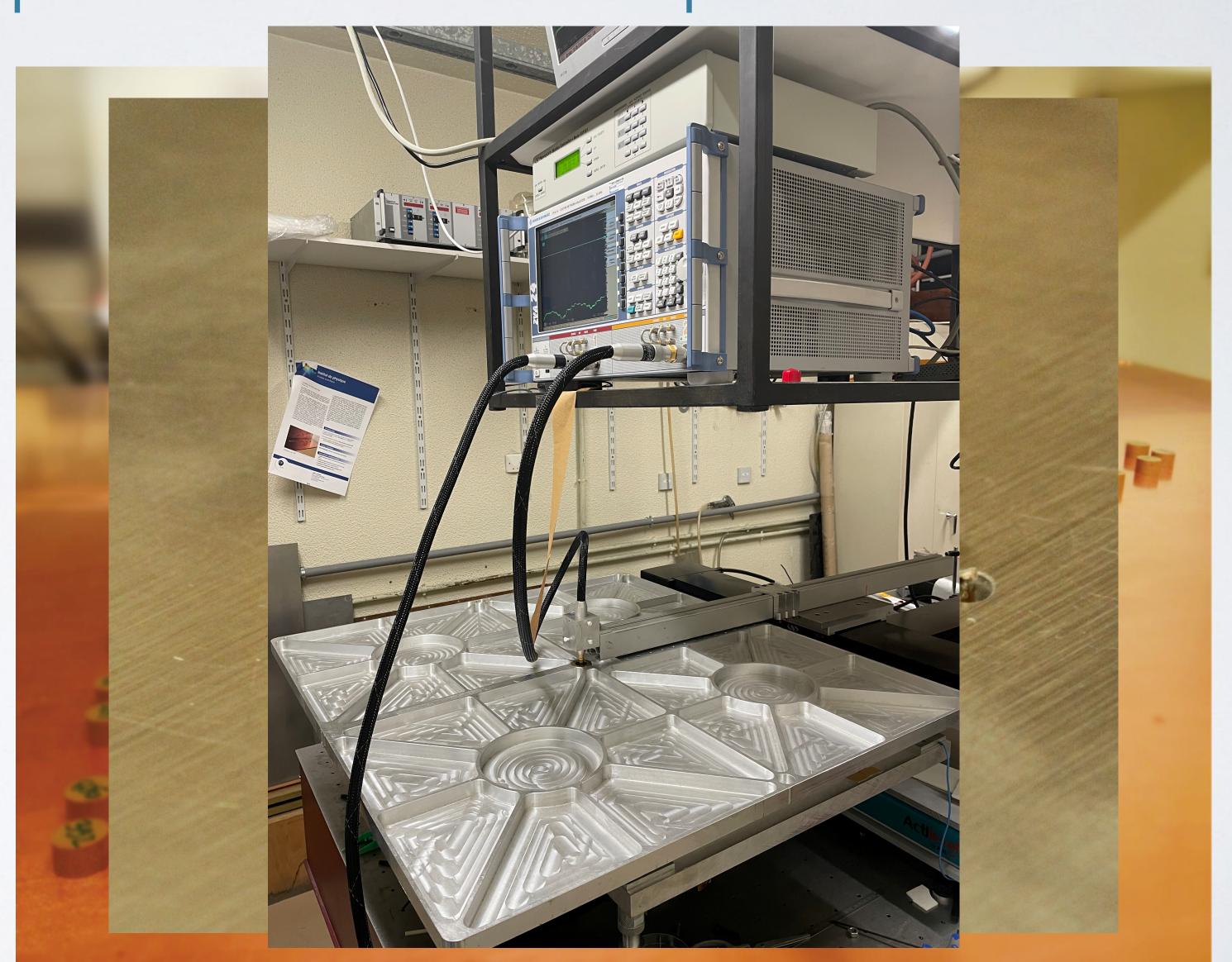
Experimental setup

- Vector Network Analyzer
 (@ 0-24 GHz)
- coaxial SMA 3.5mm
 connectors
- 'kink' and 'loop' antennas: TE polarization
- dielectric resonators sandwiched between metallic plates

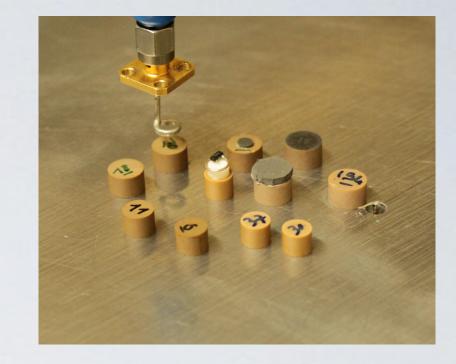


Experimental setup

- Vector Network Analyzer
 (@ 0-24 GHz)
- coaxial SMA 3.5mm
 connectors
- 'kink' and 'loop' antennas: TE polarization
- dielectric resonators sandwiched between metallic plates



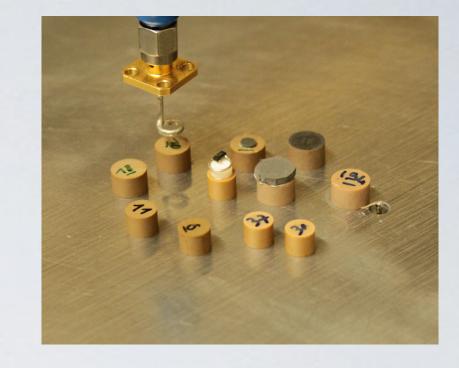
Microwave resonators



Dielectric ceramic (ZrSnTiO,TiZrNbZnO):

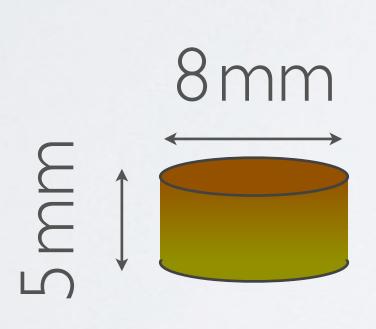
- high permittivity: $\varepsilon = 37 \rightarrow 45$
- low loss: $Q \simeq 3000$

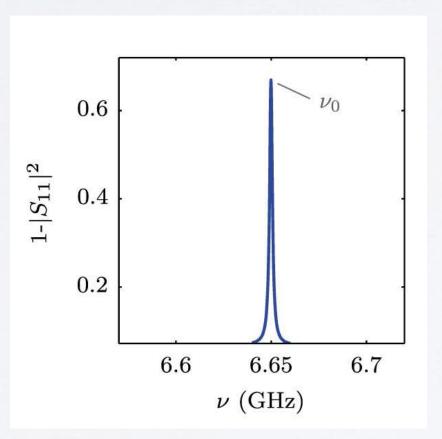
Microwave resonators



Dielectric ceramic (ZrSnTiO,TiZrNbZnO):

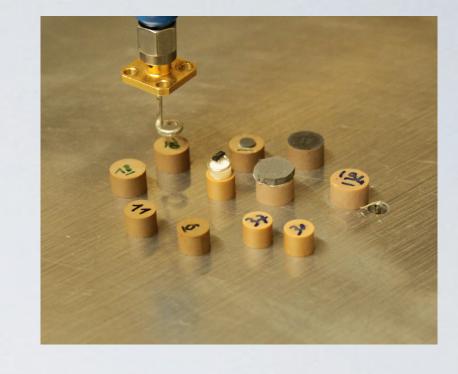
- high permittivity: $\varepsilon = 37 \rightarrow 45$
- low loss: $Q \simeq 3000$





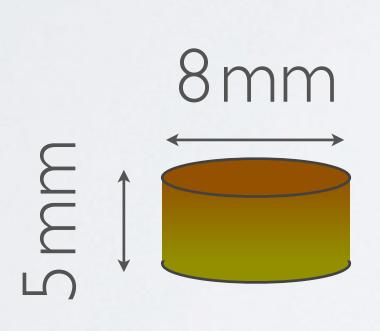
$$S_{11}(\nu) = 1 - i\sigma \frac{|\Psi(\vec{r}_1)|^2}{\nu - \nu_0 + i\Gamma}$$

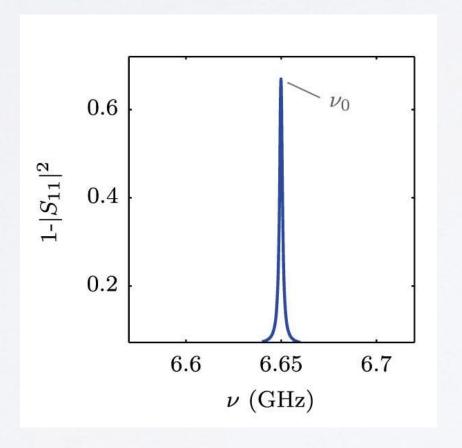
Microwave resonators



Dielectric ceramic (ZrSnTiO,TiZrNbZnO):

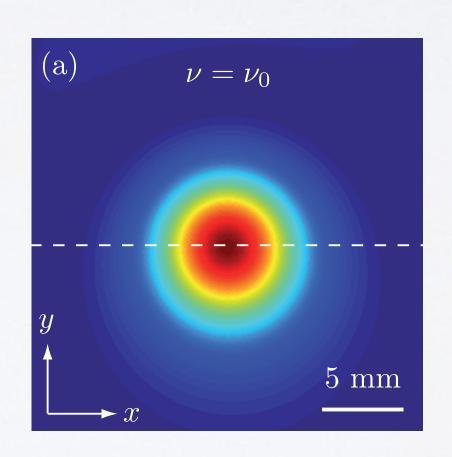
- high permittivity: $\varepsilon = 37 \rightarrow 45$
- low loss: $Q \simeq 3000$

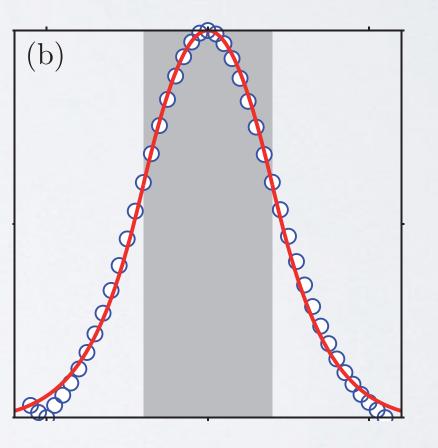




$$S_{11}(\nu) = 1 - i\sigma \frac{|\Psi(\vec{r}_1)|^2}{\nu - \nu_0 + i\Gamma}$$

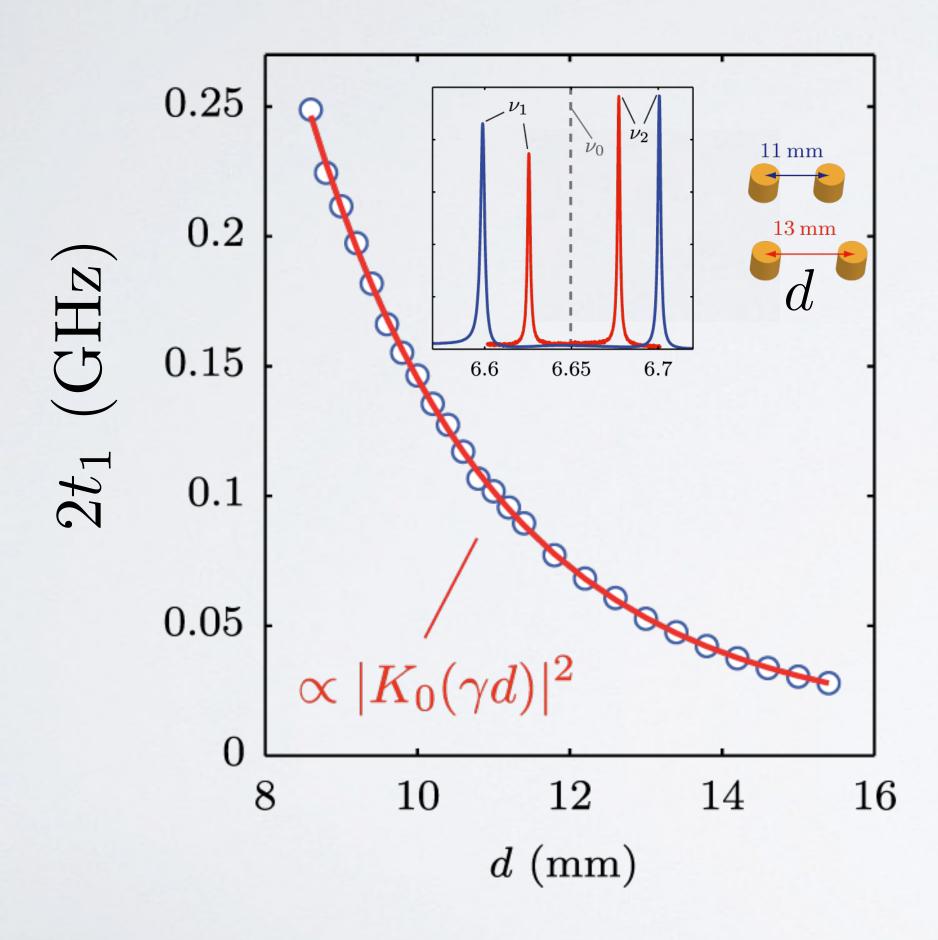
- TE_I Mie resonance
- s-mode @ 6.65 GHz

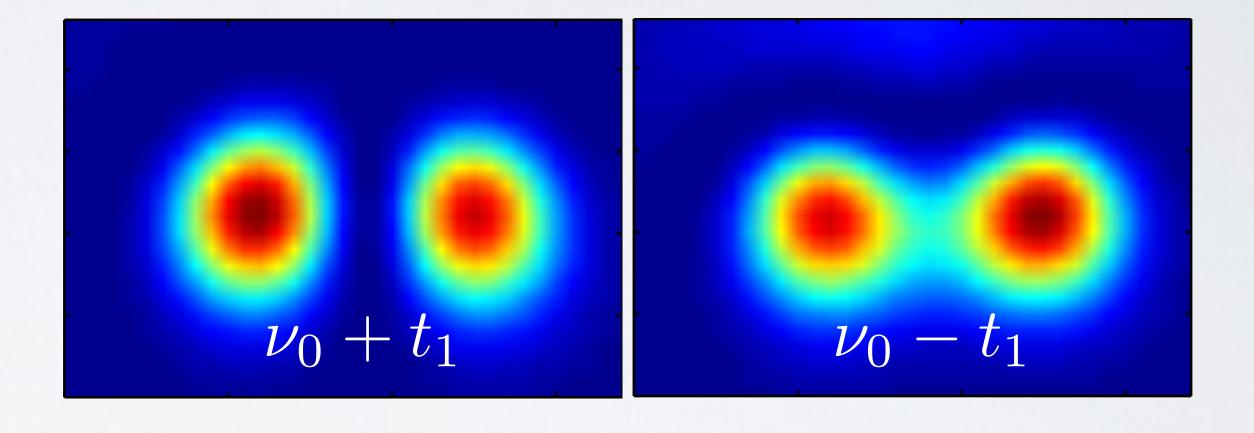




$$B_z(\vec{r}, z) = B_0 \sin\left(\frac{\pi}{h}z\right) \times \begin{cases} J_0(\gamma_j \vec{r}) \\ \alpha K_0(\gamma_k \vec{r}) \end{cases}$$

Tight-binding coupling

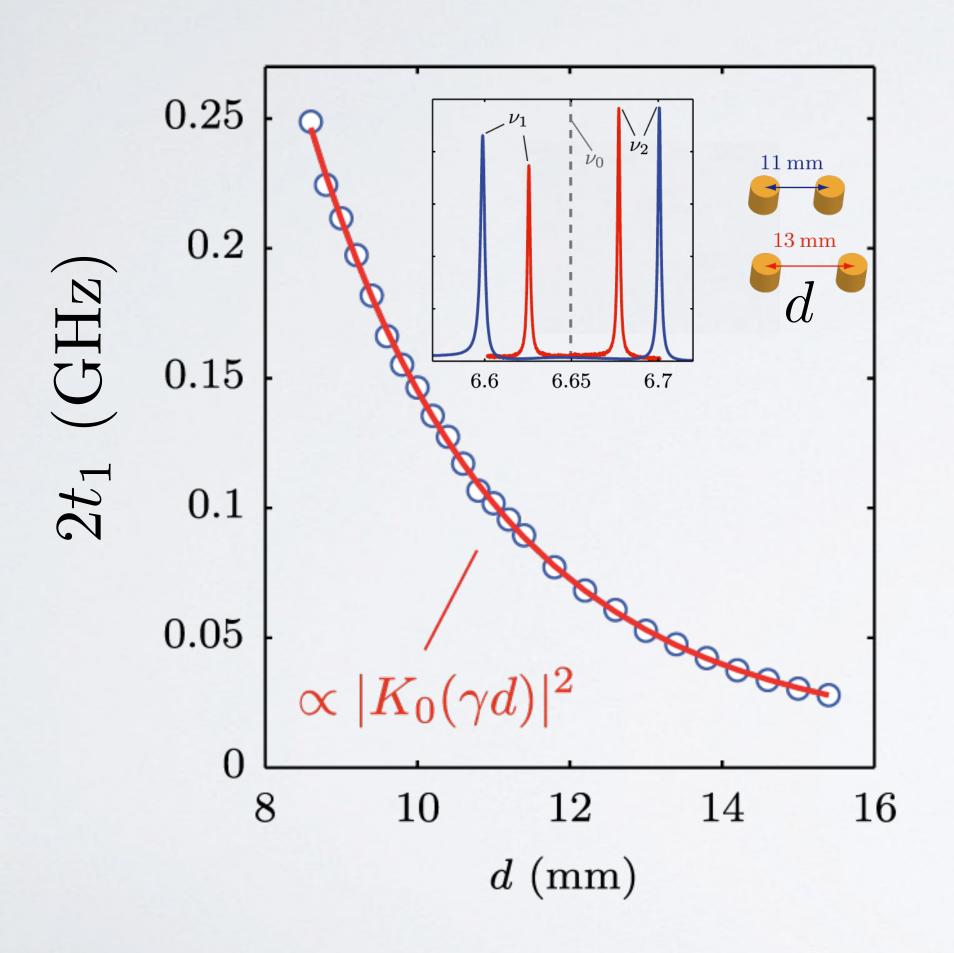


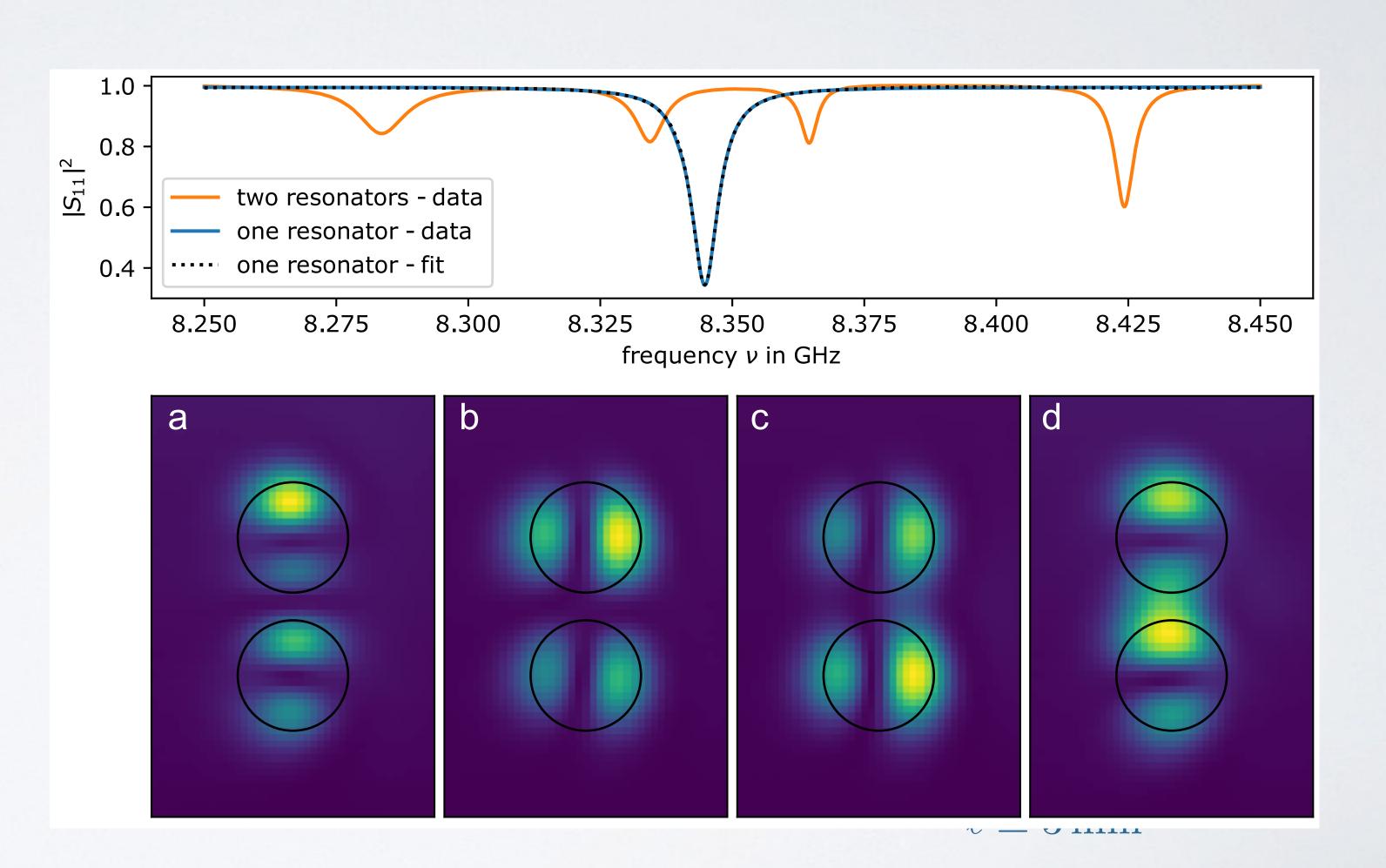


$$H(d) = \begin{pmatrix} \nu_0 & -t_1(d) \\ -t_1(d) & \nu_0 \end{pmatrix}$$

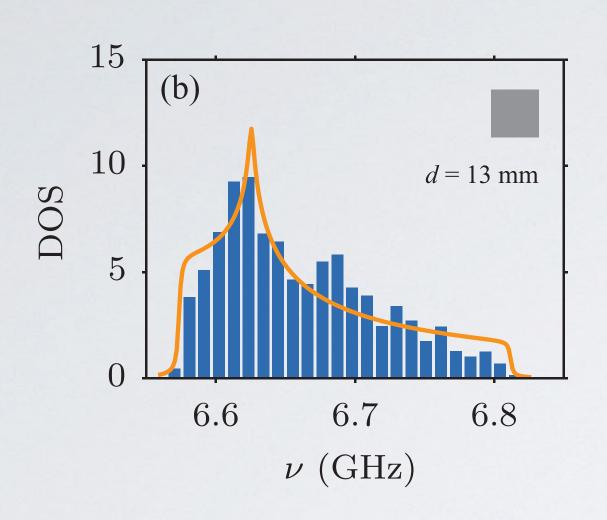
$$t_1(d) \propto -|K_0(d/2\ell)|^2$$
 $\ell \simeq 3 \,\mathrm{mm}$

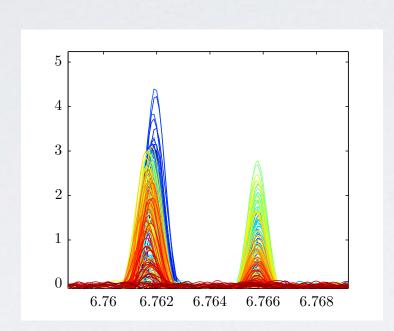
Tight-binding coupling

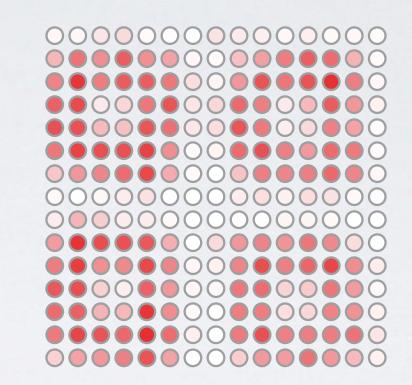


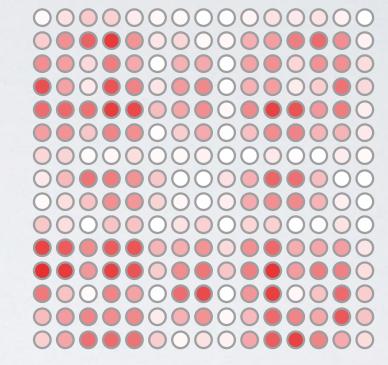


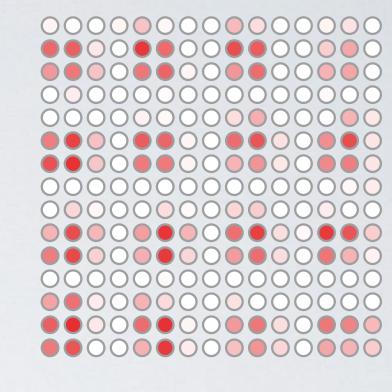
Coupled microwave resonator lattices





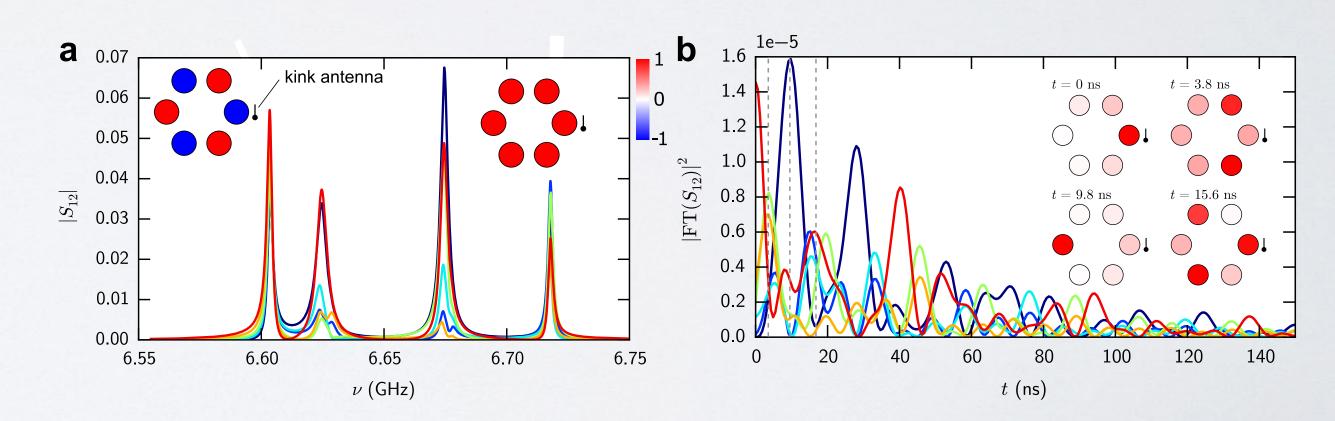






Transmission measurement

$$S_{12}(\nu; \vec{r}_1, \vec{r}_2) = -i\sqrt{\sigma_1 \sigma_2} \sum_{n=1}^{N} \frac{\Psi_n(\vec{r}_1)\Psi_n^*(\vec{r}_2)}{\nu - \nu_n + i\Gamma_n}$$



Experimental access to LDoS, DoS, wavefunctions and pulse spreadings

Microwave artificial graphene

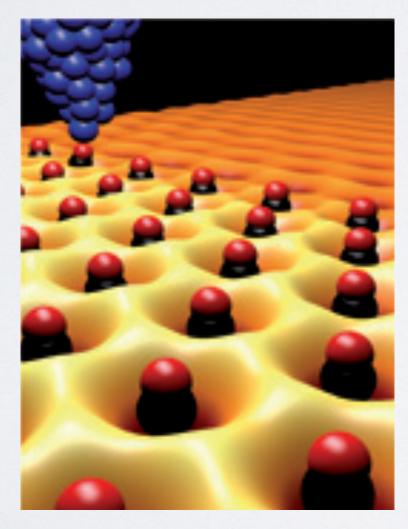
nature nanotechnology

REVIEW ARTICLE

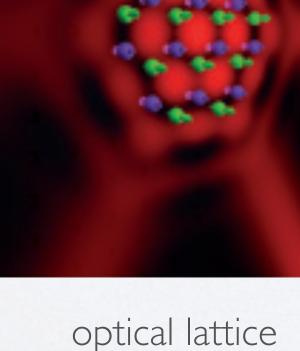
Artificial honeycomb lattices for electrons, atoms and photons

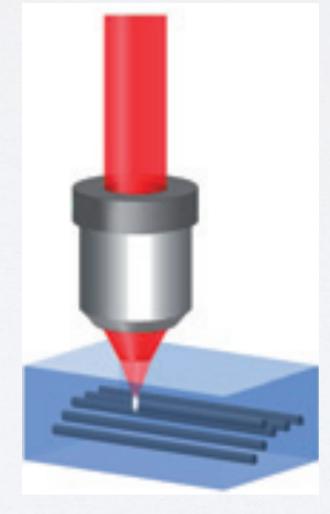
Marco Polini^{1*}, Francisco Guinea², Maciej Lewenstein^{3,4}, Hari C. Manoharan^{5,6} and Vittorio Pellegrini^{1,7}

nanopatterned SC micropillar lattice 7DEG



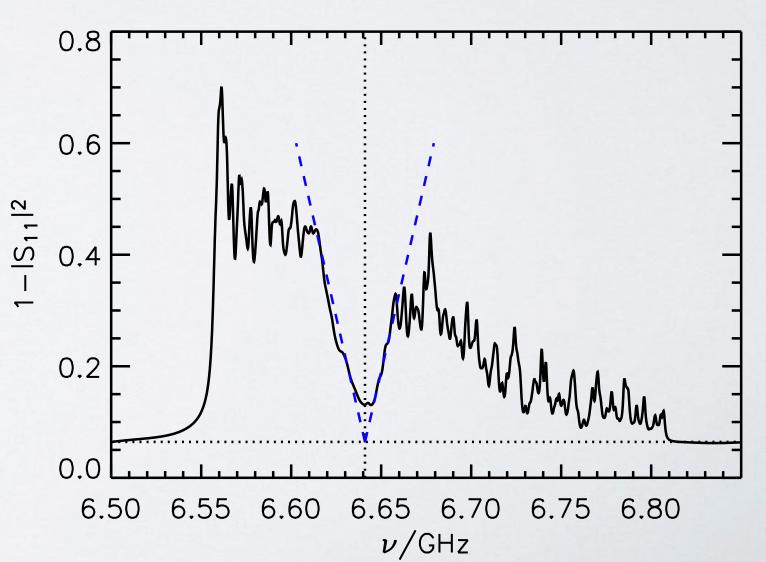
molecular lattice





refractive index lattice

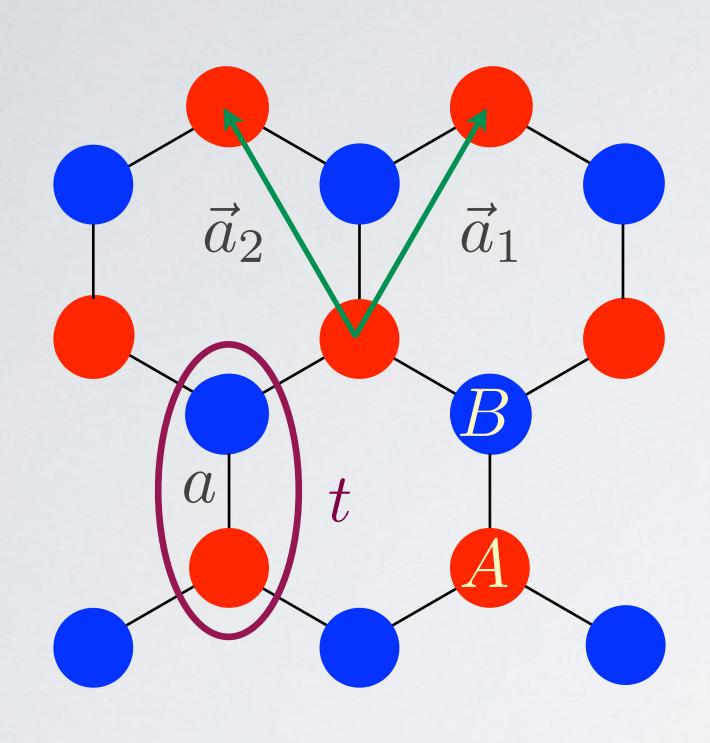
Light/microwave



Outline

- 1. The playground: coupled microwave resonator lattices dielectric resonators, TE modes, evanescent coupling, LDOS & eigenstates
- 2. Initiatory game: topological phase transition in strained graphene Berry phase, merging of Dirac points, Zak phase, manipulation of edge states
- 3. 'Flat games': Lieb lattice & Pseudo-Landau levels flat band, sublattice polarization, gigantic pseudo-magnetic field, supersymmetric oscillator

Honeycomb lattice



In the Bloch representation:

$$|\psi_k\rangle = \frac{1}{N} \sum_{\text{cells}} (\lambda_A |\varphi_j^A\rangle + \lambda_B |\varphi_j^B\rangle) e^{i\mathbf{k}\cdot\mathbf{R}_j}$$

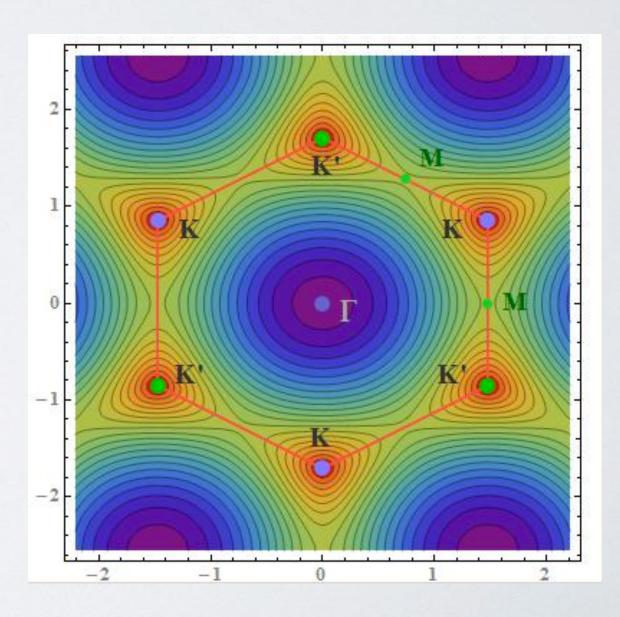
Hamiltonian in k-space

$$\mathcal{H}_{\mathbf{k}} = -t \begin{pmatrix} 0 & f^*(\mathbf{k}) \\ f(\mathbf{k}) & 0 \end{pmatrix}$$

$$f(\mathbf{k}) = 1 + e^{i\mathbf{k}\cdot\mathbf{a}_1} + e^{i\mathbf{k}\cdot\mathbf{a}_2}$$

Dispersion relation:

$$\varepsilon(\mathbf{k}) = \pm t \left[3 + 2\cos\mathbf{k} \cdot \mathbf{a}_1 + 2\cos\mathbf{k} \cdot \mathbf{a}_2 + 2\cos\mathbf{k} \cdot (\mathbf{a}_1 - \mathbf{a}_2) \right]^{1/2}$$



Topology of Dirac points

$$\mathcal{H}_{\mathbf{k}} = -t \begin{pmatrix} 0 & f^*(\mathbf{k}) \\ f(\mathbf{k}) & 0 \end{pmatrix} \qquad f(\mathbf{k}) = \beta + e^{i\mathbf{k}\cdot\mathbf{a}_1} + e^{i\mathbf{k}\cdot\mathbf{a}_2}$$

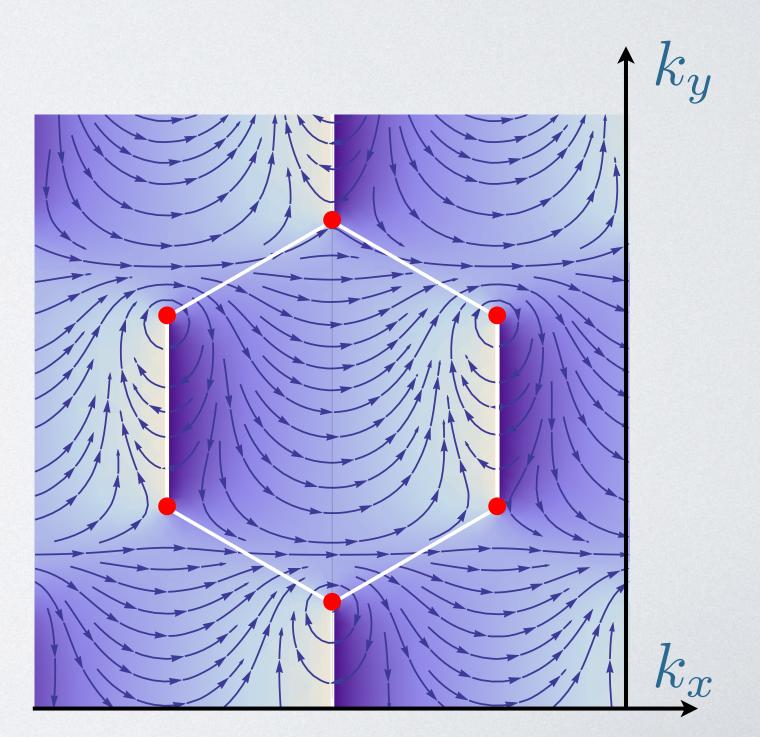
$$f(\mathbf{k}) = \beta + e^{i\mathbf{k}\cdot\mathbf{a}_1} + e^{i\mathbf{k}\cdot\mathbf{a}_2}$$

 $\phi_{\mathbf{k}} = \arg[f(\mathbf{k})]$

$$\varepsilon(\mathbf{k}) = \pm |f(\mathbf{k})|^{1/2}$$

Eigenstates:

$$\psi_{\mathbf{k}}^{\pm}(\mathbf{r}) = \frac{1}{\sqrt{2}} \begin{pmatrix} \pm 1 \\ e^{i\phi_{\mathbf{k}}} \end{pmatrix} e^{i\mathbf{k}\cdot\mathbf{r}}$$



Topology of Dirac points

$$\mathcal{H}_{\mathbf{k}} = -t \begin{pmatrix} 0 & f^*(\mathbf{k}) \\ f(\mathbf{k}) & 0 \end{pmatrix} \qquad f(\mathbf{k}) = \beta + e^{i\mathbf{k}\cdot\mathbf{a}_1} + e^{i\mathbf{k}\cdot\mathbf{a}_2}$$

$$f(\mathbf{k}) = \beta + e^{i\mathbf{k}\cdot\mathbf{a}_1} + e^{i\mathbf{k}\cdot\mathbf{a}_2}$$

$$\varepsilon(\mathbf{k}) = \pm |f(\mathbf{k})|^{1/2}$$

Eigenstates:

$$\psi_{\mathbf{k}}^{\pm}(\mathbf{r}) = \frac{1}{\sqrt{2}} \begin{pmatrix} \pm 1 \\ e^{i\phi_{\mathbf{k}}} \end{pmatrix} e^{i\mathbf{k}\cdot\mathbf{r}}$$

Berry phase:

$$\phi_B = \frac{1}{2} \oint \nabla_{\mathbf{k}} \phi_{\mathbf{k}} \cdot \mathrm{d}\mathbf{k}$$

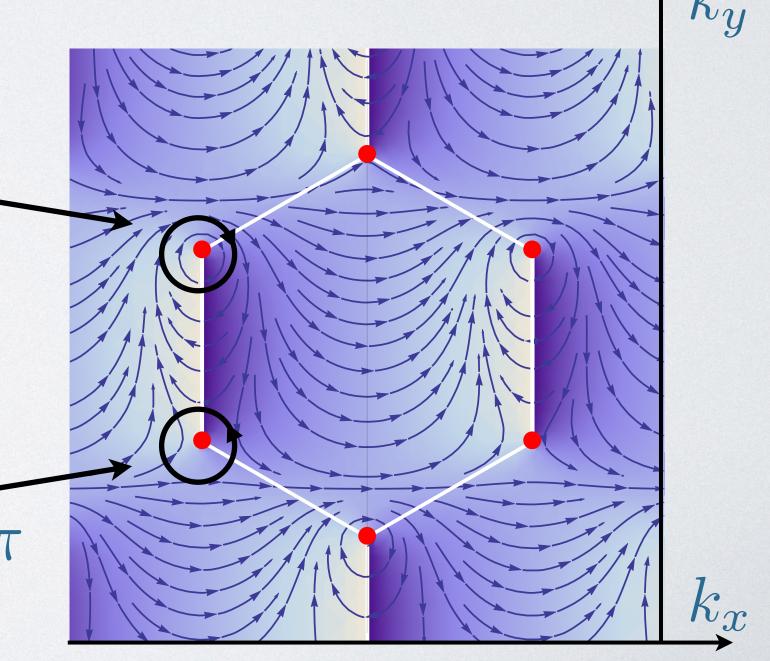
 $\phi_{\mathbf{k}} = \arg[f(\mathbf{k})]$

$$\phi_B = -\pi$$

Phase singularity around

Dirac points

$$\phi_B = +\tau$$



Topology of Dirac points

$$\mathcal{H}_{\mathbf{k}} = -t \begin{pmatrix} 0 & f^*(\mathbf{k}) \\ f(\mathbf{k}) & 0 \end{pmatrix} \qquad f(\mathbf{k}) = \beta + e^{i\mathbf{k}\cdot\mathbf{a}_1} + e^{i\mathbf{k}\cdot\mathbf{a}_2}$$

$$f(\mathbf{k}) = \beta + e^{i\mathbf{k}\cdot\mathbf{a}_1} + e^{i\mathbf{k}\cdot\mathbf{a}_2}$$

$$\varepsilon(\mathbf{k}) = \pm |f(\mathbf{k})|^{1/2}$$

Eigenstates:

$$\psi_{\mathbf{k}}^{\pm}(\mathbf{r}) = \frac{1}{\sqrt{2}} \begin{pmatrix} \pm 1 \\ e^{i\phi_{\mathbf{k}}} \end{pmatrix} e^{i\mathbf{k}\cdot\mathbf{r}}$$

Berry phase:

$$\phi_B = \frac{1}{2} \oint \nabla_{\mathbf{k}} \phi_{\mathbf{k}} \cdot \mathrm{d}\mathbf{k}$$

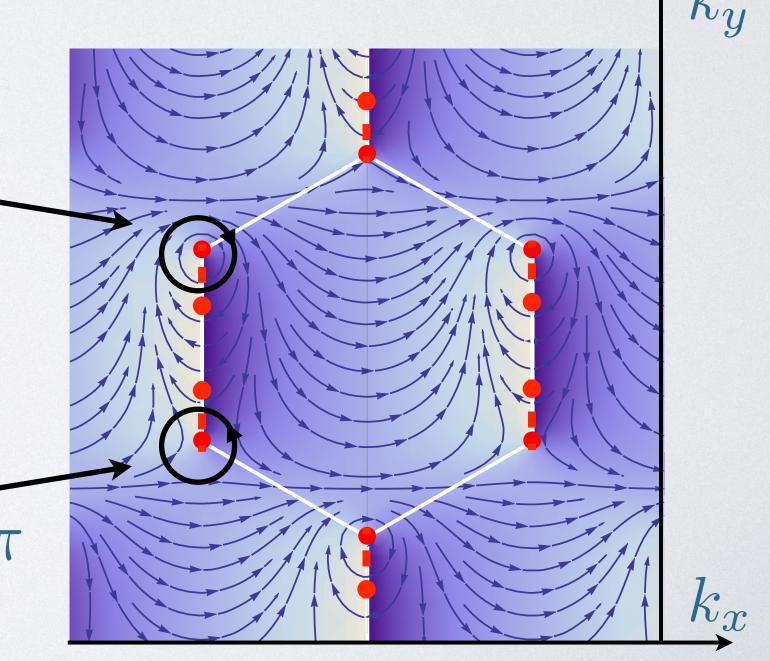
 $\phi_{\mathbf{k}} = \arg[f(\mathbf{k})]$

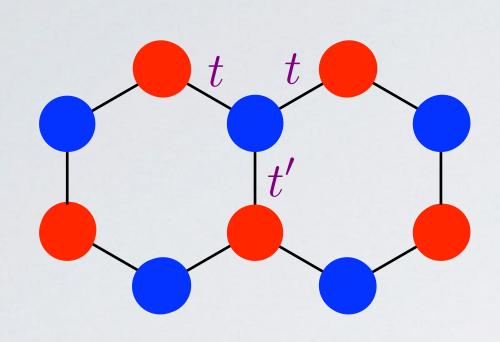
$$\phi_B = -\pi$$

Phase singularity around

Dirac points

$$\phi_B = +\tau$$

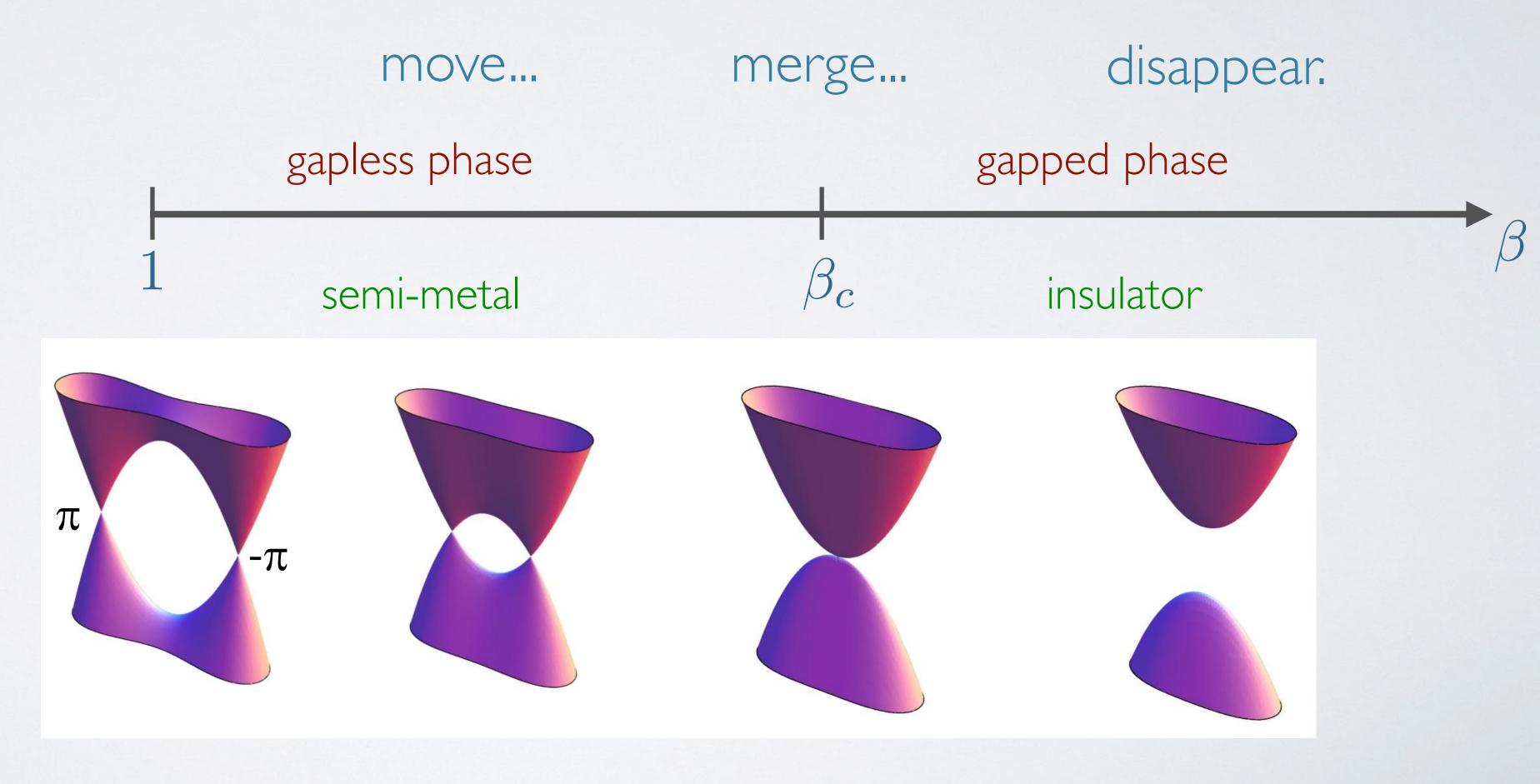




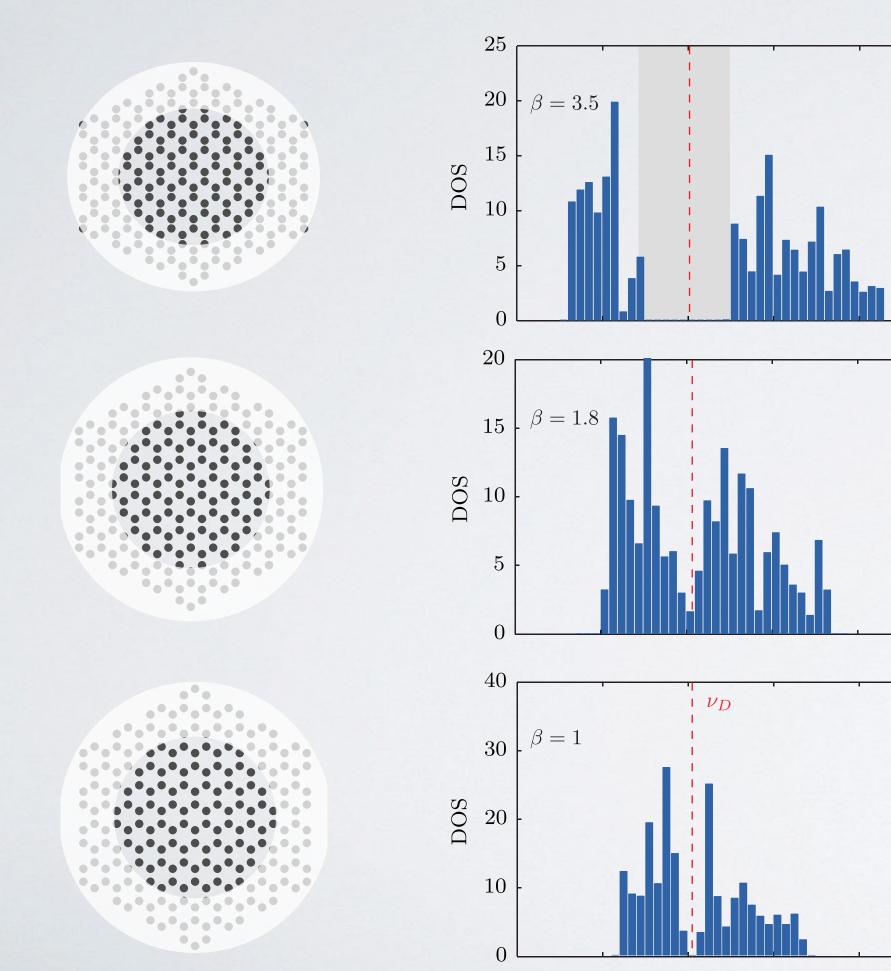
anisotropy parameter:

$$\beta = \frac{t'}{t}$$

When anisotropy increases, Dirac points...



Montambaux, Piéchon, Fuchs, Goerbig (2009) Hasegawa et al. (2006); Pereira et al. (2009)



6.55

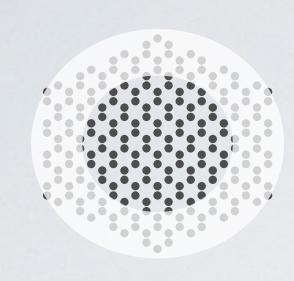
6.6

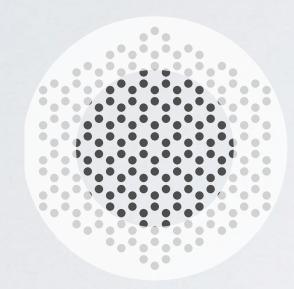
6.65

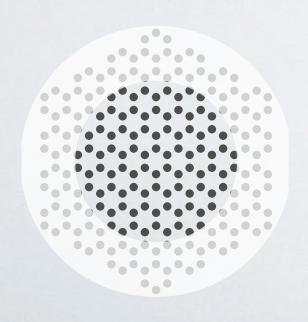
6.7

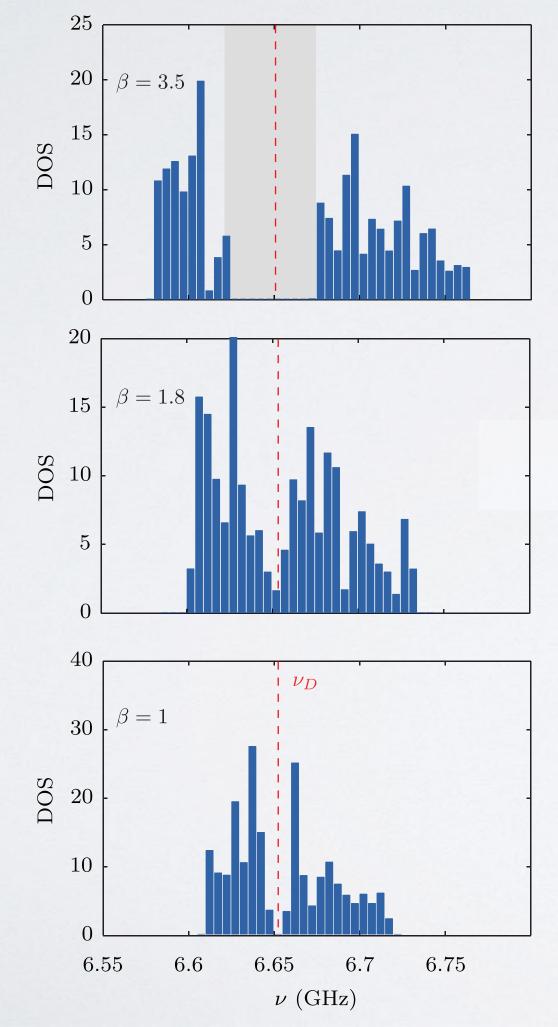
 ν (GHz)

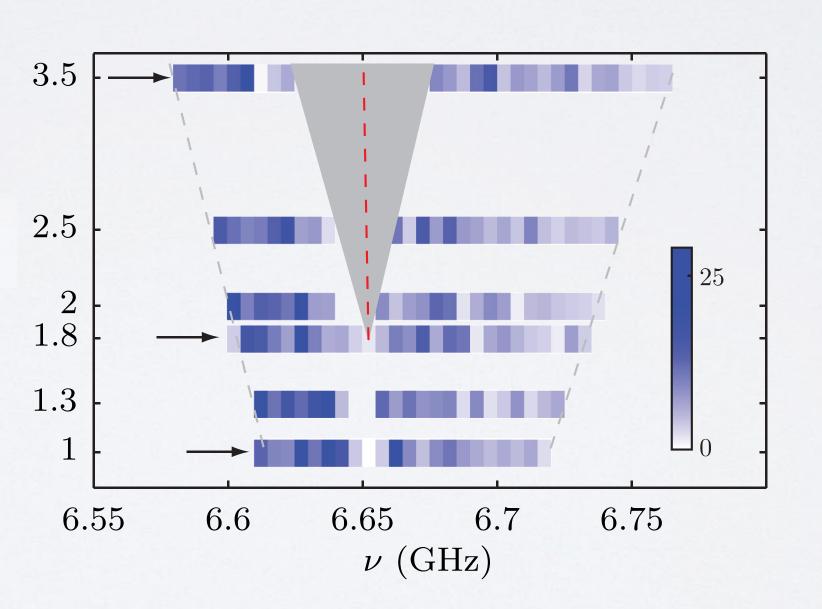
6.75

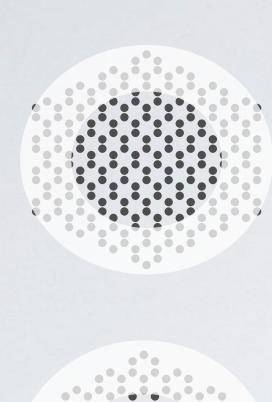


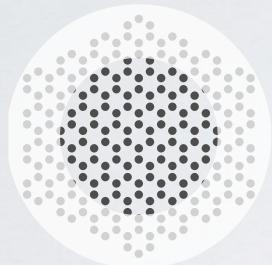


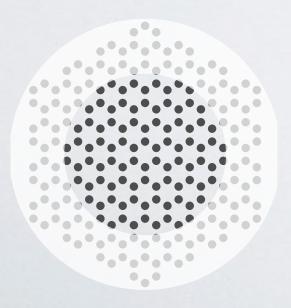


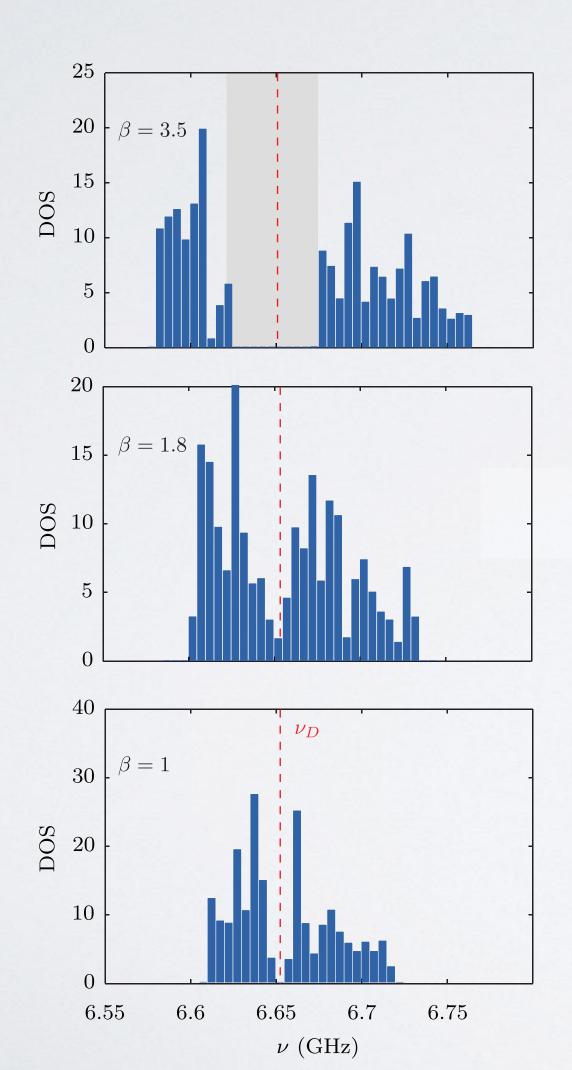


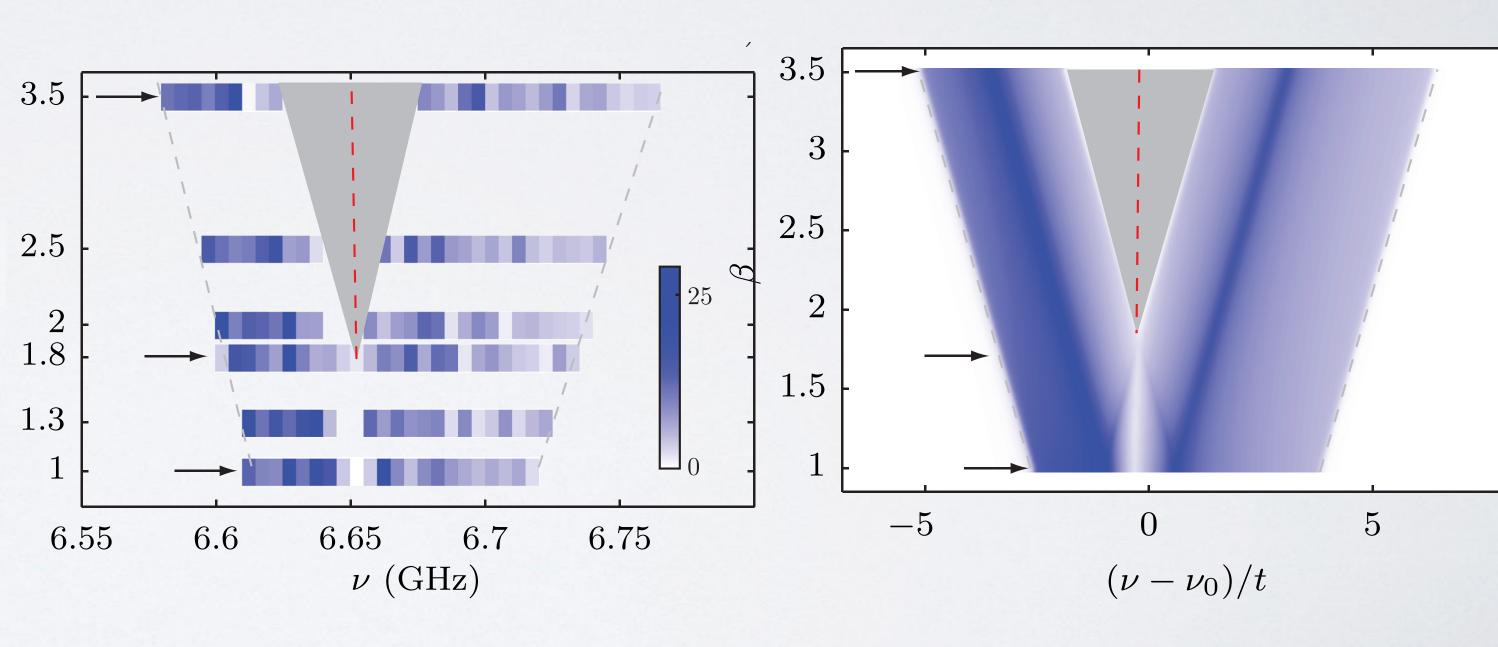


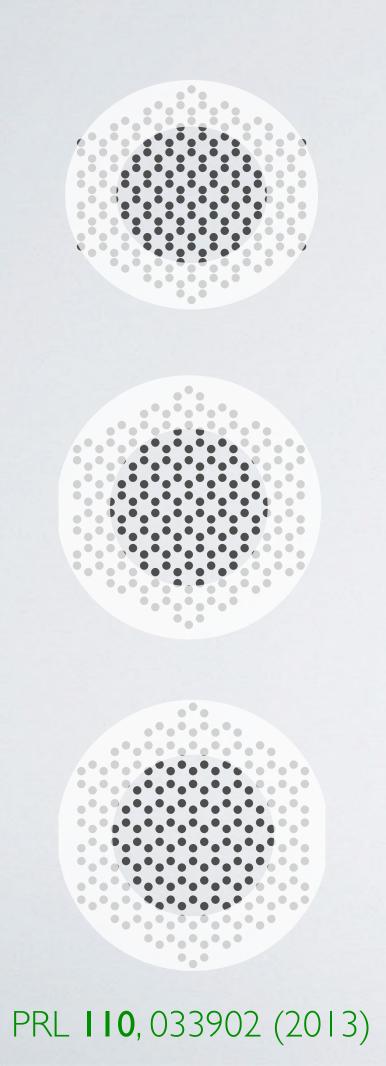


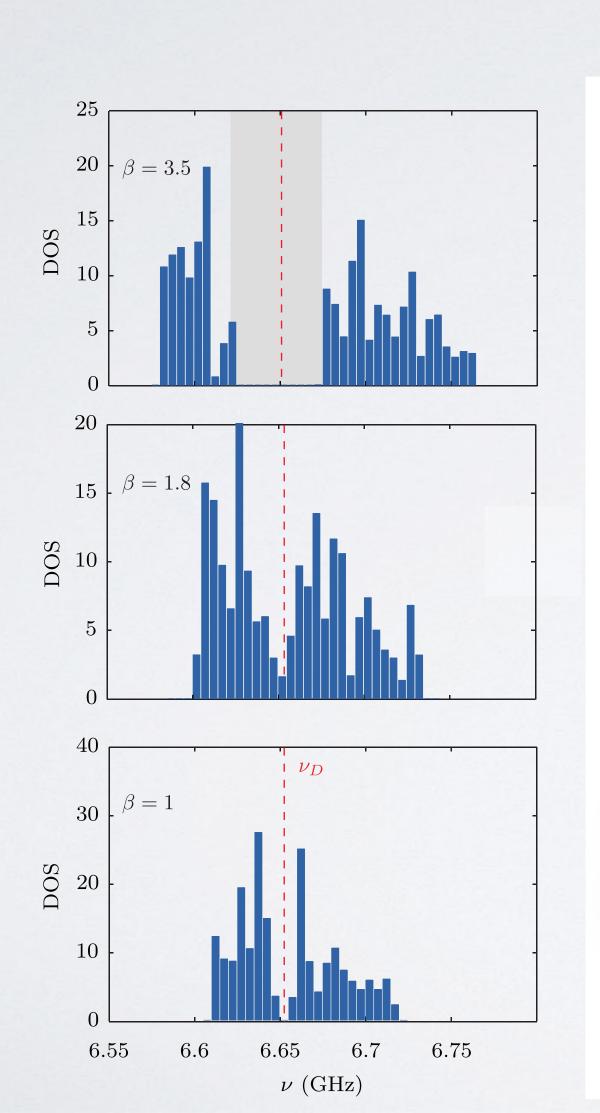


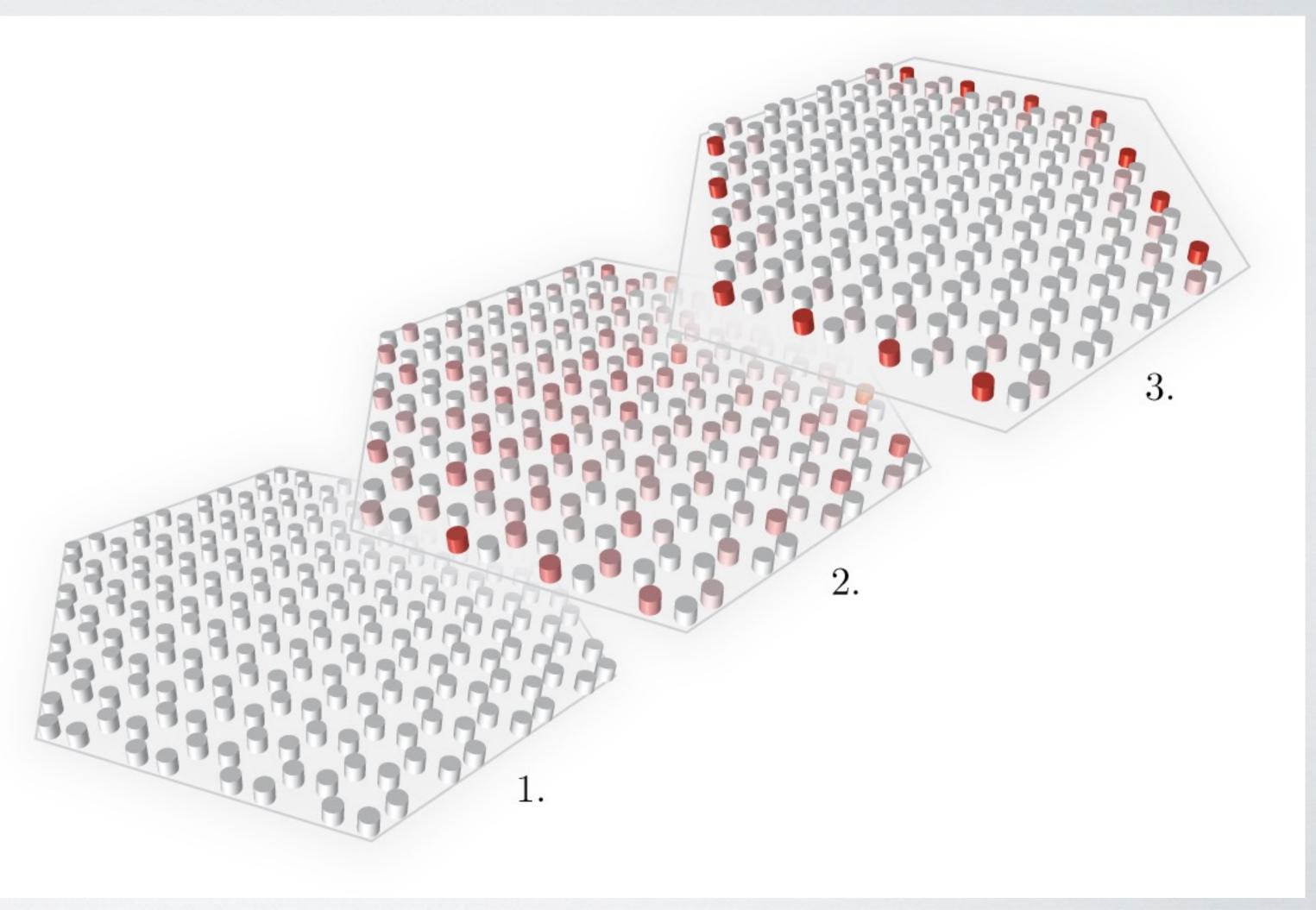


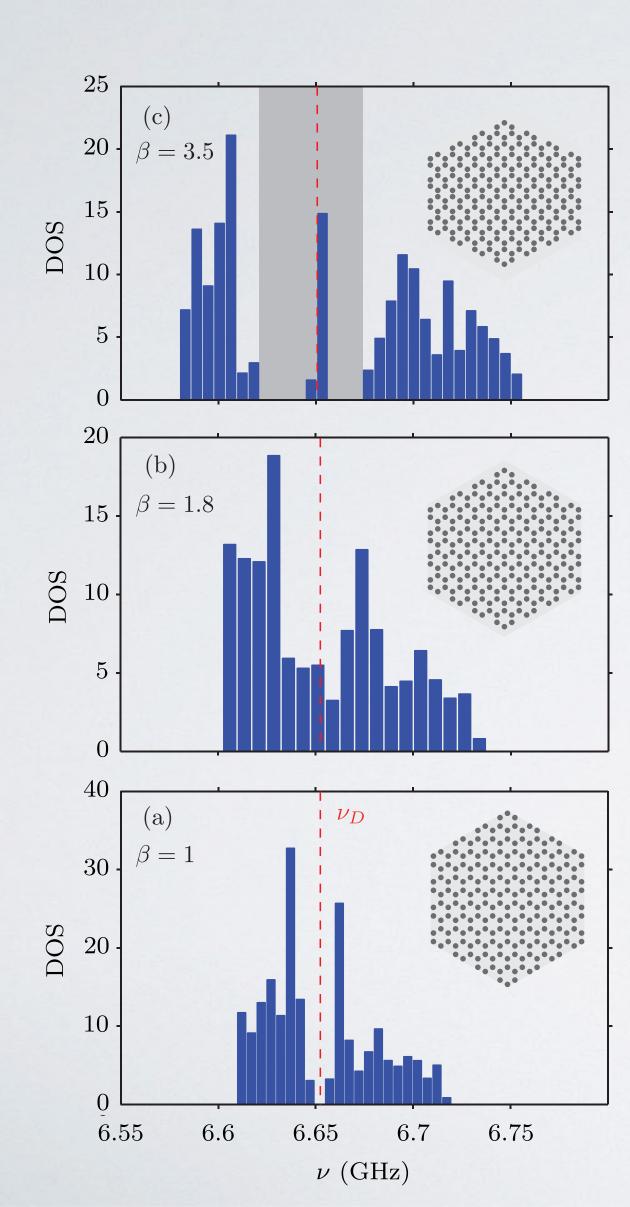




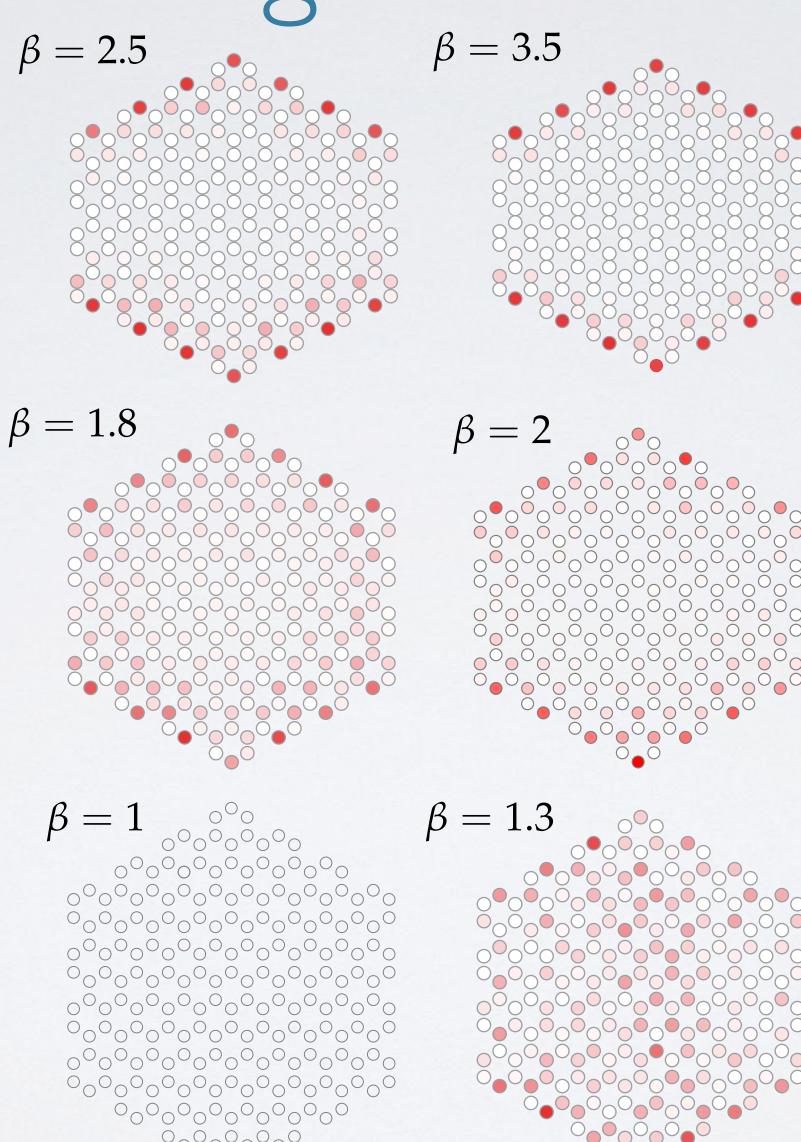






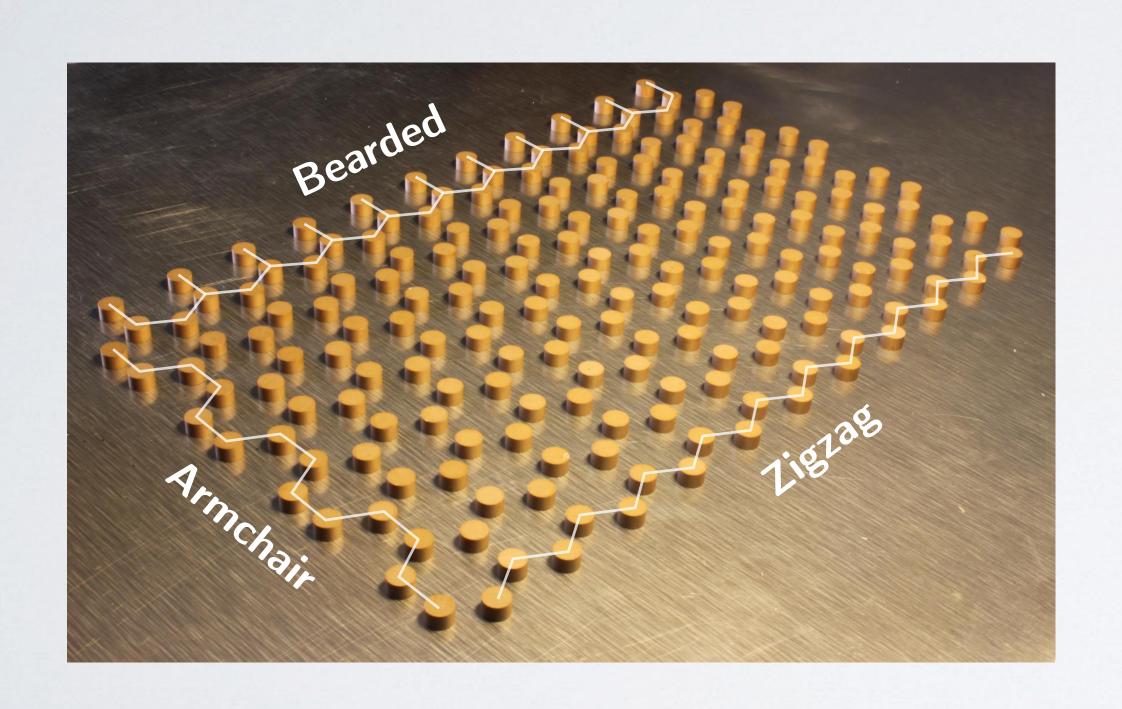


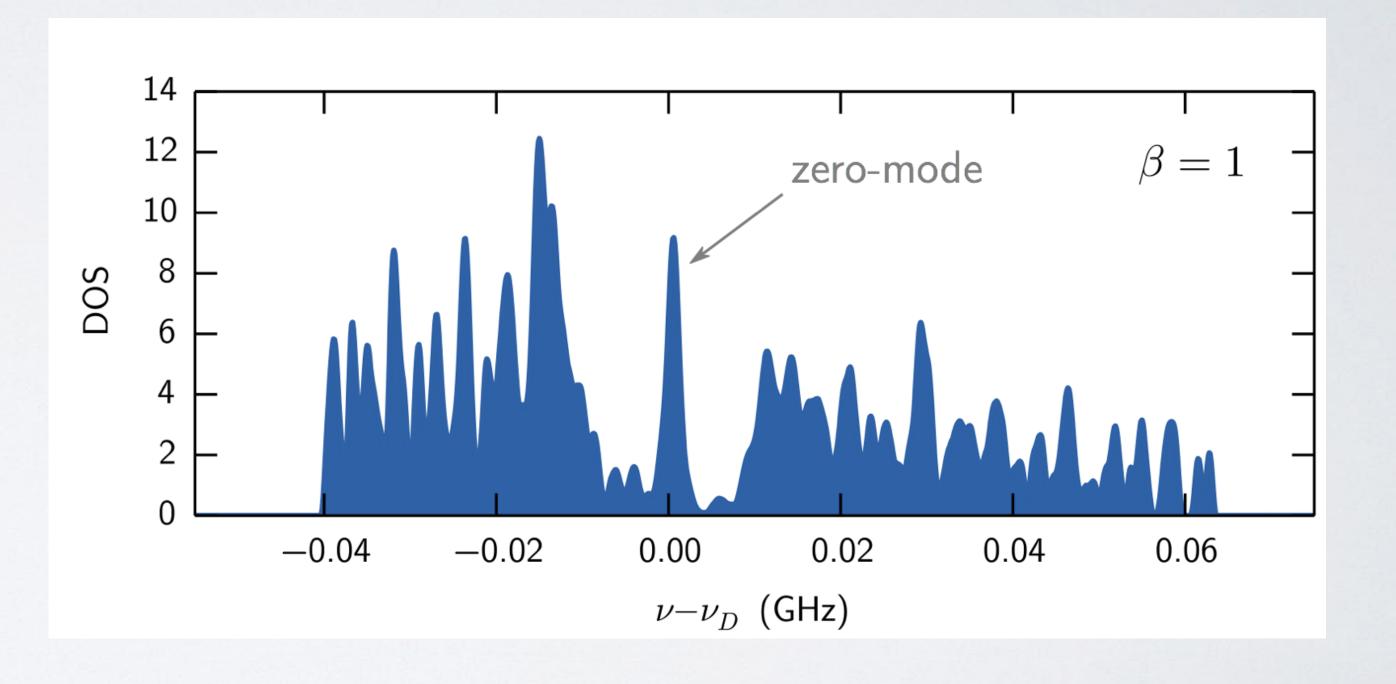
Edge states $\beta = 3.5$



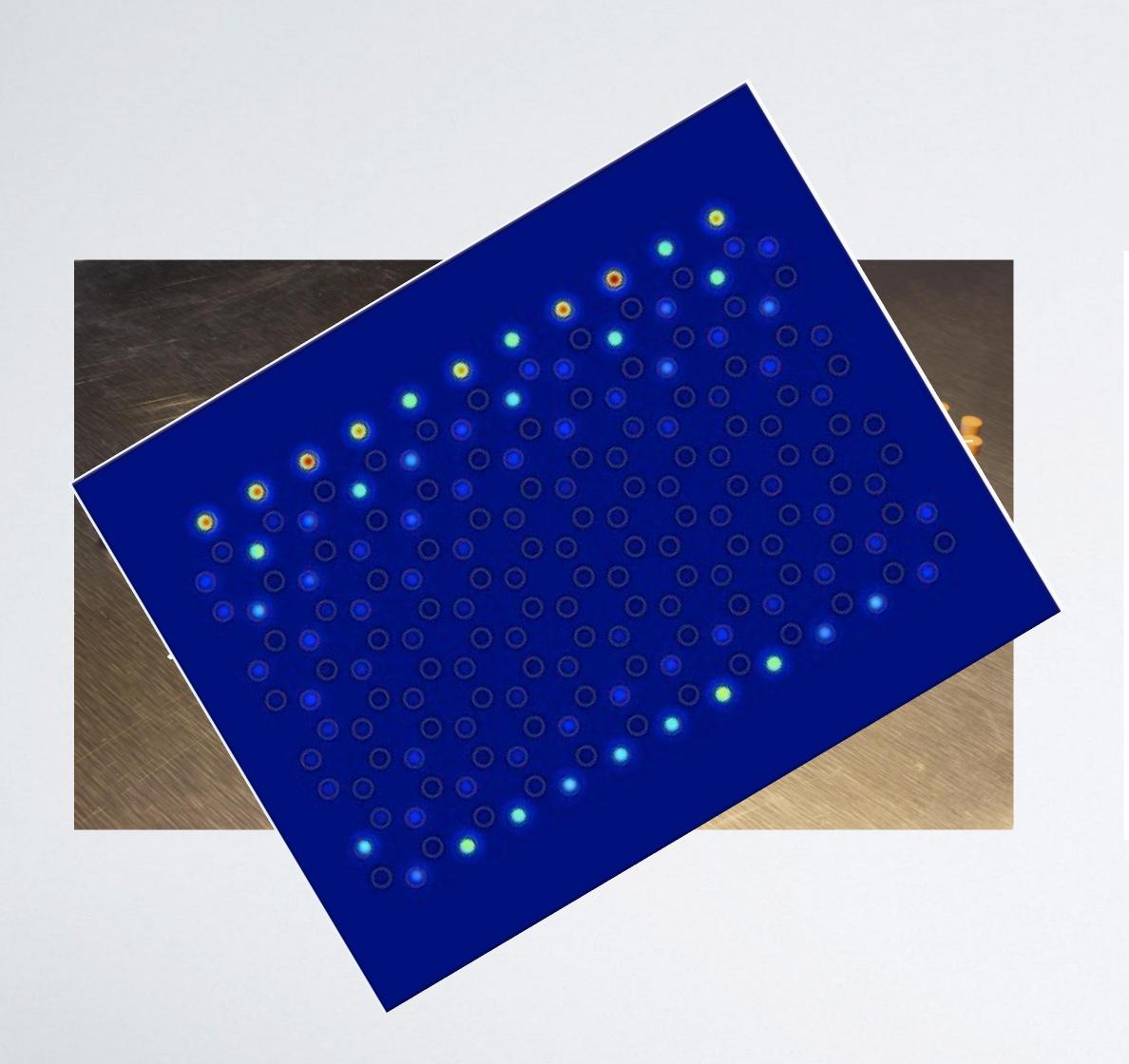
- no edge states along the compression axis
- edge states live only on one sublattice
- the higher the anisotropy the smaller the extension into the bulk

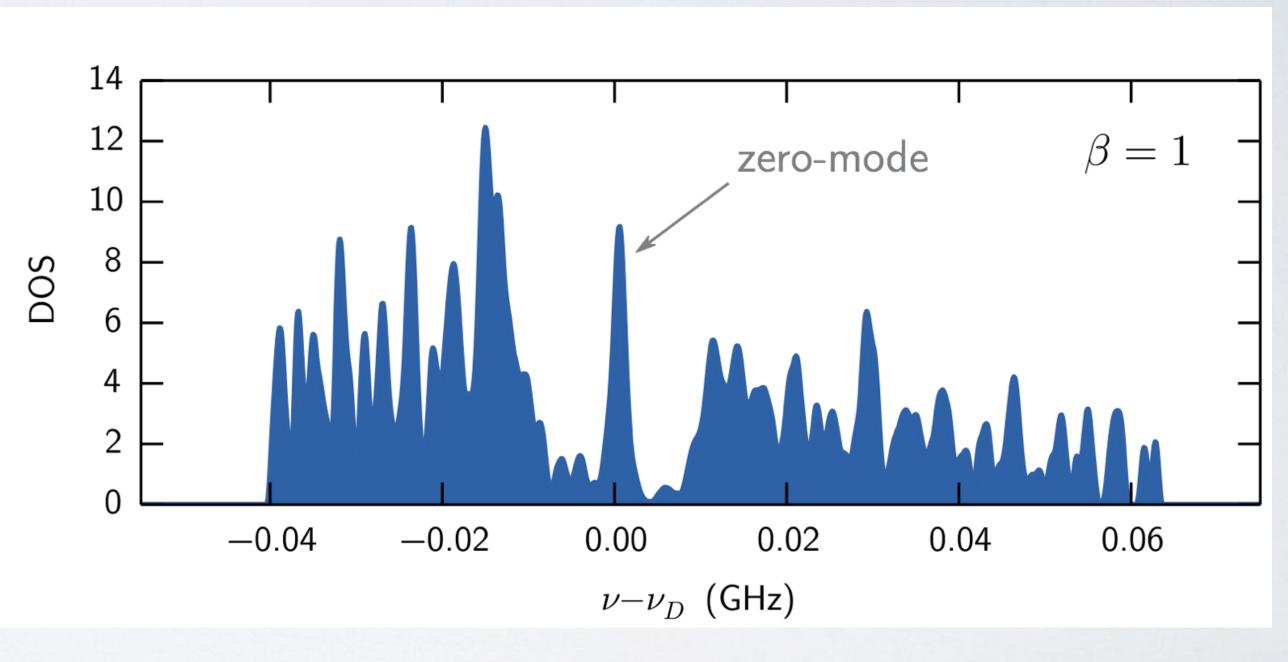
Edgde states in 'graphene' ribbons



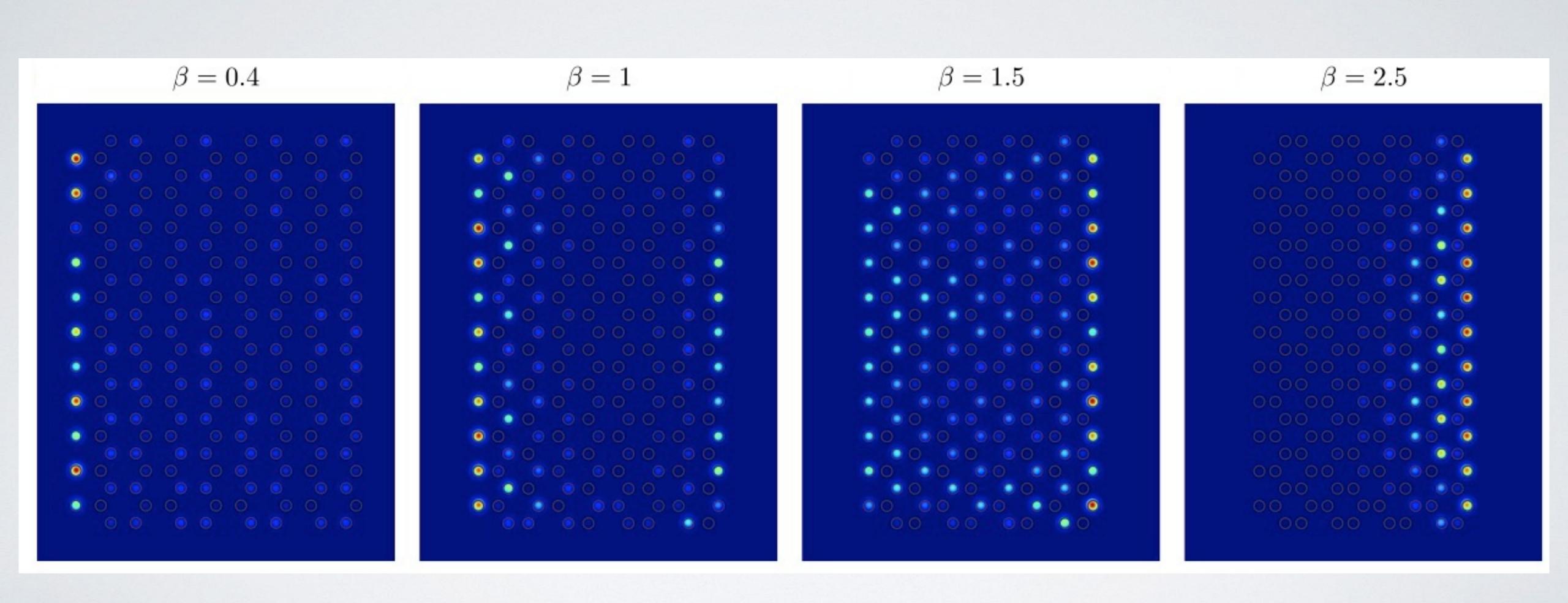


Edgde states in 'graphene' ribbons

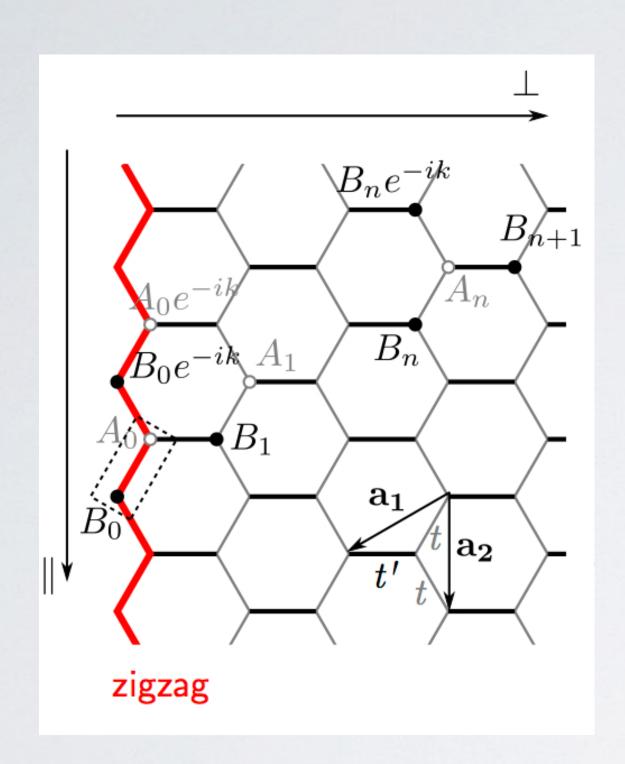


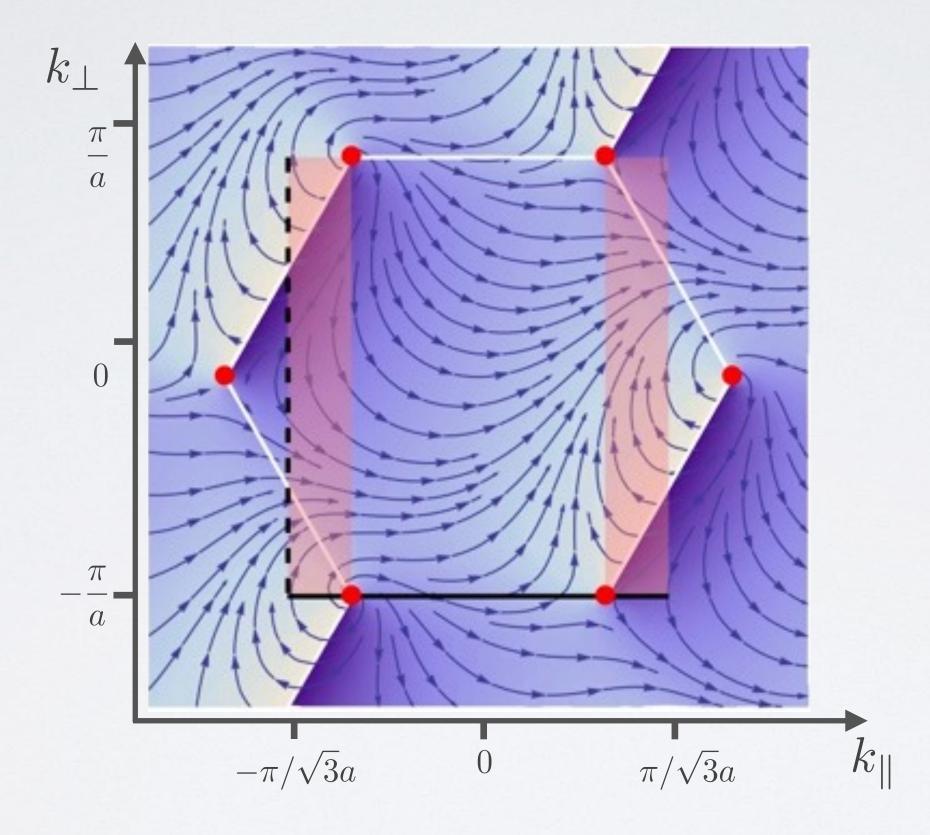


Zig-zag & Bearded edge states



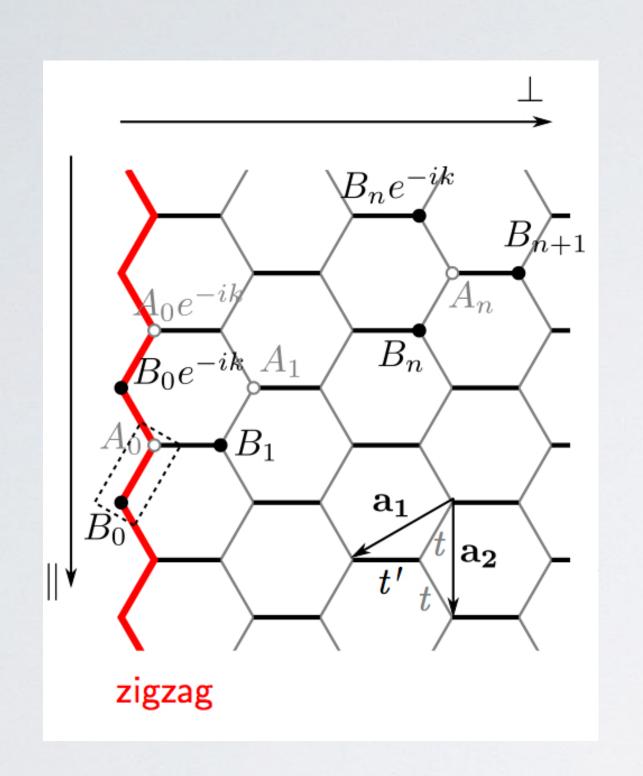
Zak phase & edge states

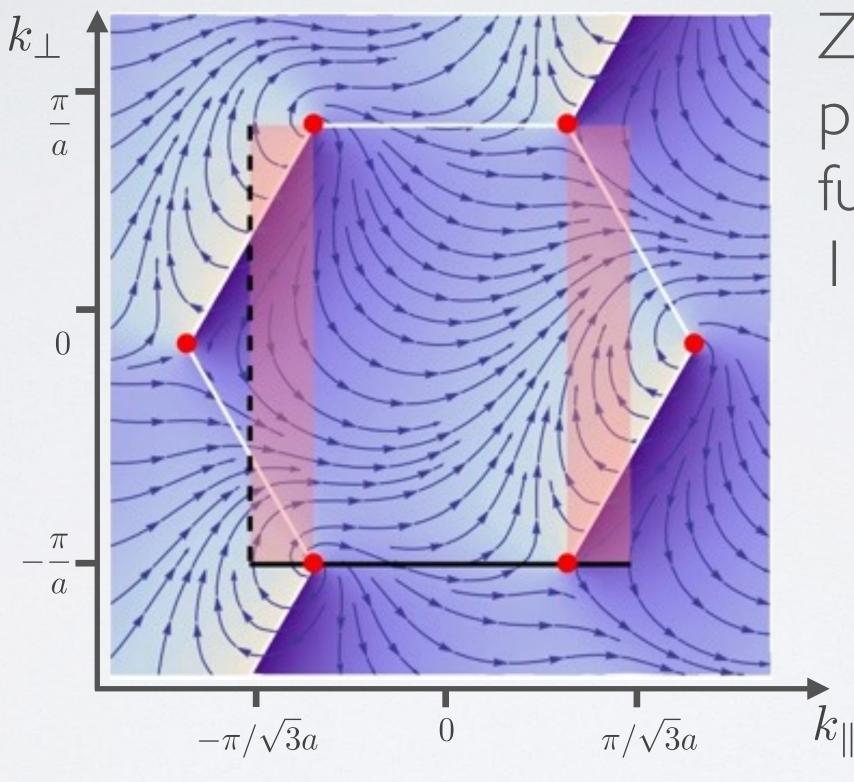




$$f^{\mathbf{z}\mathbf{z}}(\mathbf{k}) = 1 + \beta e^{i(\frac{\sqrt{3}}{2}k_{\parallel} - \frac{3}{2}k_{\perp})a} + e^{i\sqrt{3}k_{\parallel}a}$$

Zak phase & edge states





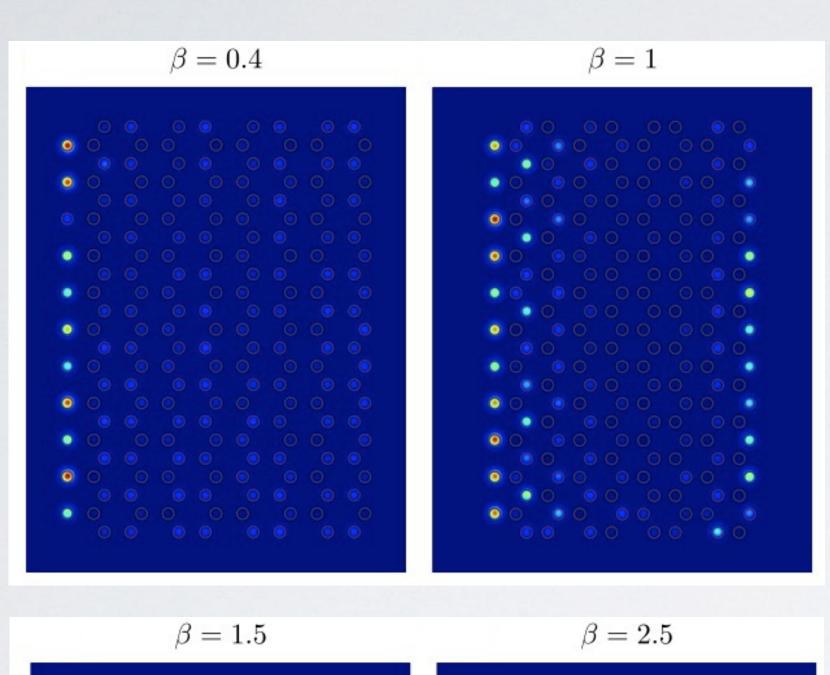
Zak phase corresponds to the Berry phase accumulated by the wave-function along a path exploring the ID Brillouin zone.

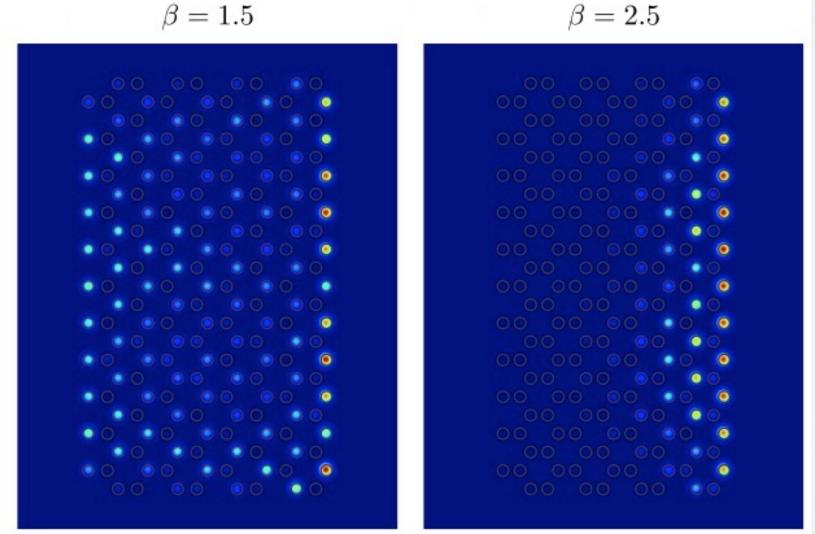
$$\mathcal{Z}(k_{\parallel}) = \frac{1}{2} \int_{BZ} dk_{\perp} \frac{\partial \phi(k_{\parallel}, k_{\perp})}{\partial k_{\perp}}$$

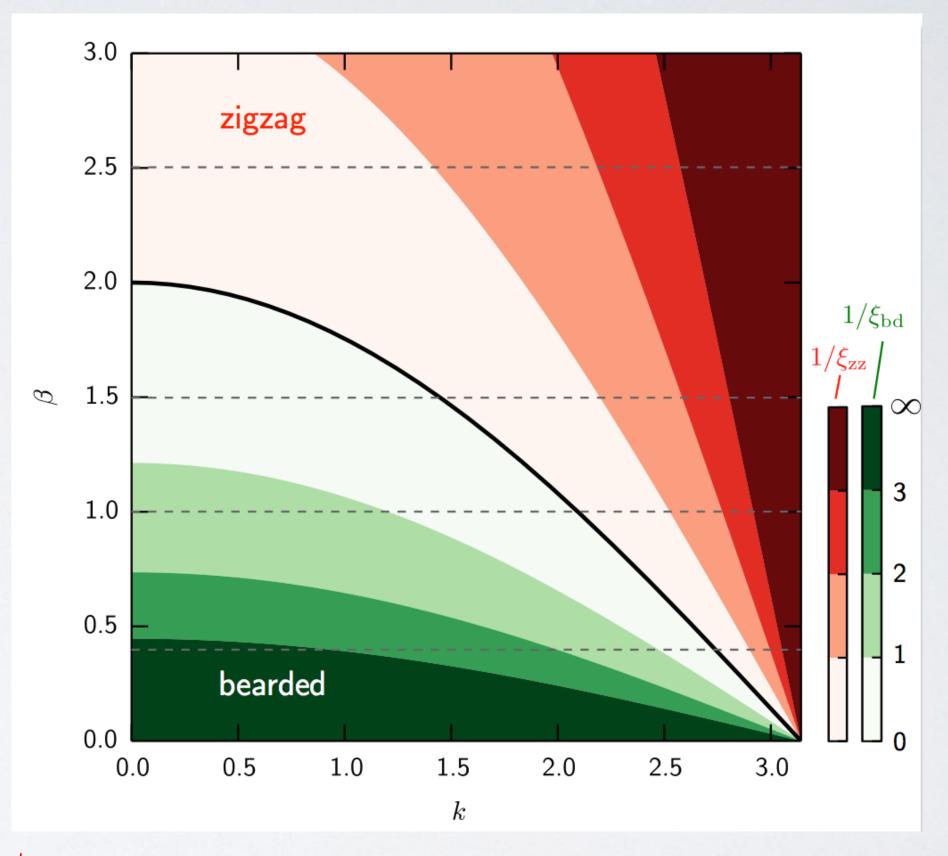
$$\mathcal{Z}(k_{\parallel}) = \left\{ egin{array}{ll} \pi & ext{edge states} \\ 0 & ext{no edge states} \end{array}
ight.$$

$$f^{zz}(\mathbf{k}) = 1 + \beta e^{i(\frac{\sqrt{3}}{2}k_{\parallel} - \frac{3}{2}k_{\perp})a} + e^{i\sqrt{3}k_{\parallel}a}$$

BD & ZZ existence diagram





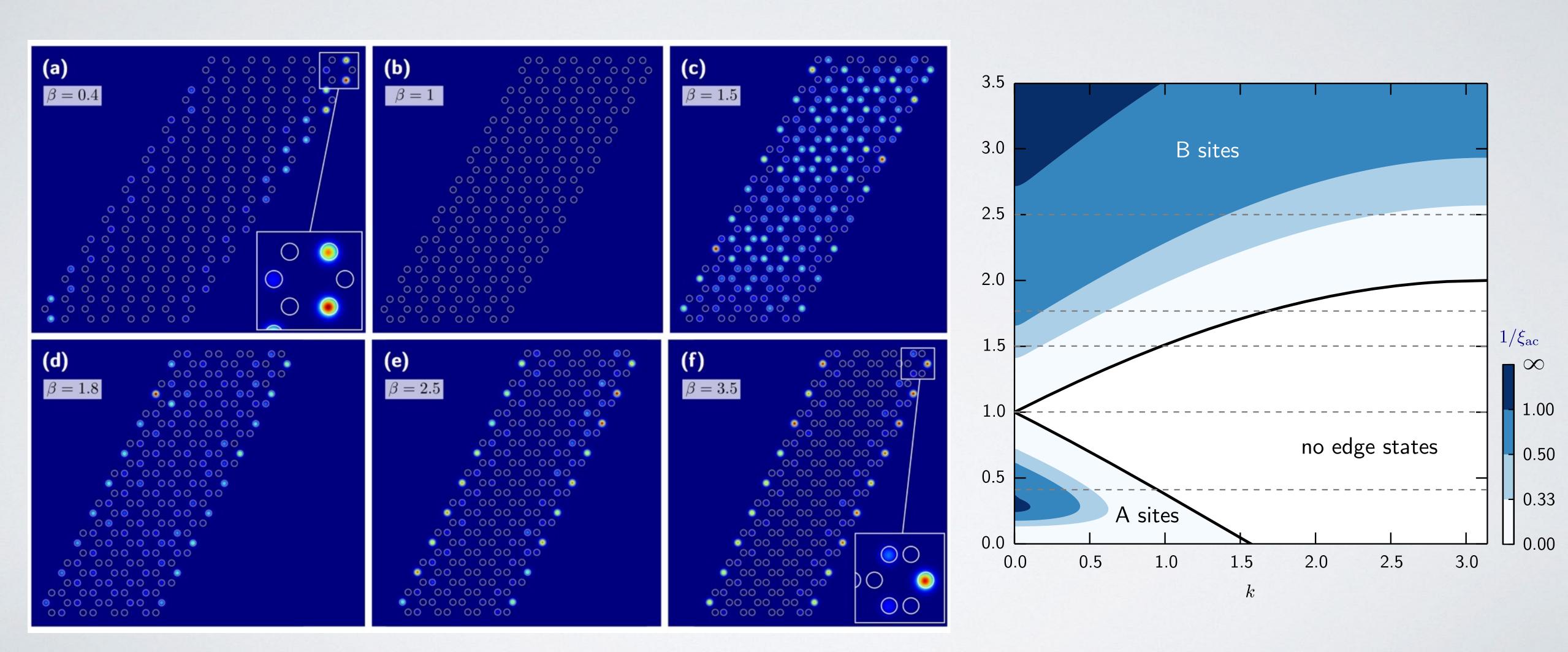


 ξ_{zz}

localization lengths (TB analysis)

 ξ_{bd}

Armchair edge states existence diagram

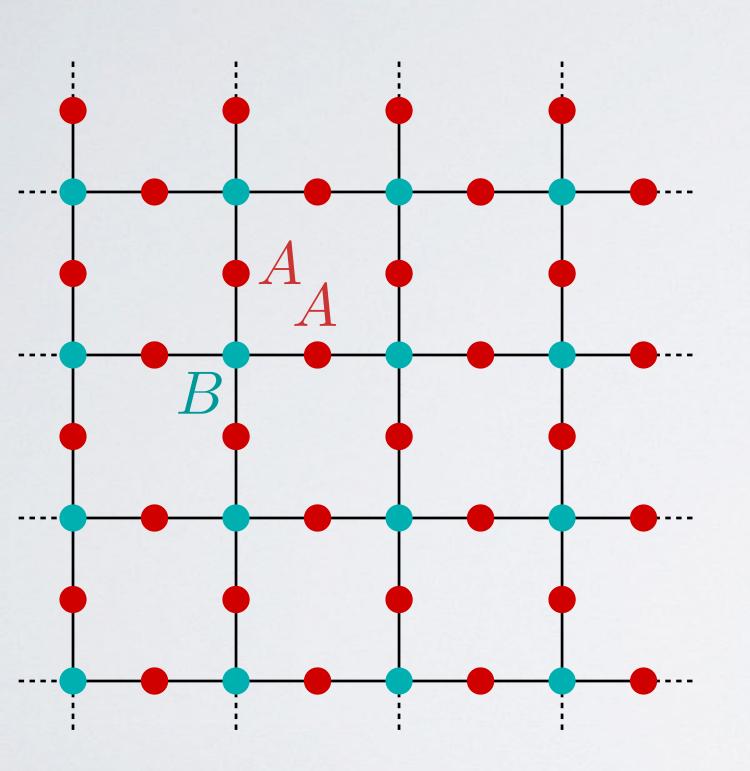


Outline

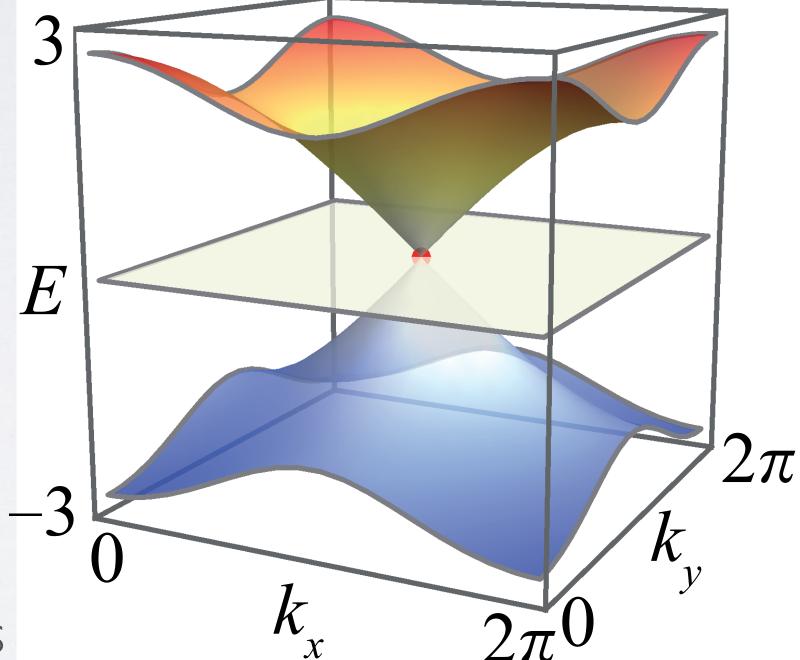
- 1. The playground: coupled microwave resonator lattices dielectric resonators, TE modes, evanescent coupling, LDOS & eigenstates
- 2. Initiatory game: topological phase transition in strained graphene Berry phase, merging of Dirac points, Zak phase, manipulation of edge states
- 3. 'Flat games': Lieb lattice & Pseudo-Landau levels flat band, sublattice polarization, gigantic pseudo-magnetic field, supersymmetric oscillator

Lieb lattice

The paradigmatic example of bipartite system with flat band



- A sites: majority sublattice, B sites: minority sublattice
- Two dispersive bands forming a Dirac cone at the M point
- Flat band at zero energy living on the majority sublattice (sublattice polarized compacton states)
- 2 additional zero modes at the Dirac point supported by opposite sublattices

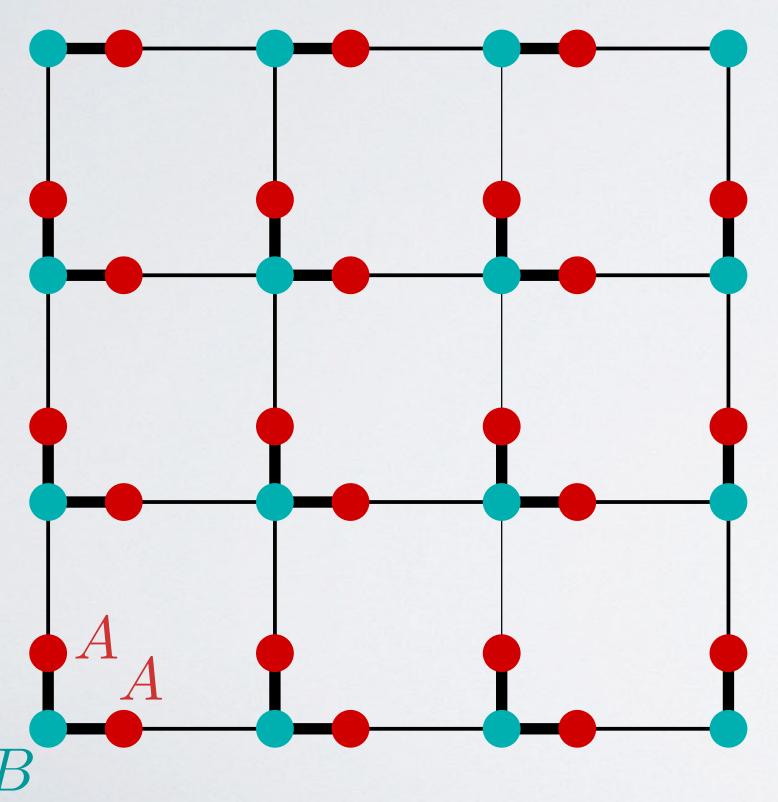


Global chiral symmetry:
$$H_{\mathrm{TB}}(\vec{k}) = \begin{pmatrix} 0 & t_{AB}(\vec{k}) \\ t_{BA}(\vec{k}) & 0 \end{pmatrix}$$
 $\sigma_z H_{\mathrm{TB}}(\vec{k}) \sigma_z = -H_{\mathrm{TB}}(\vec{k})$

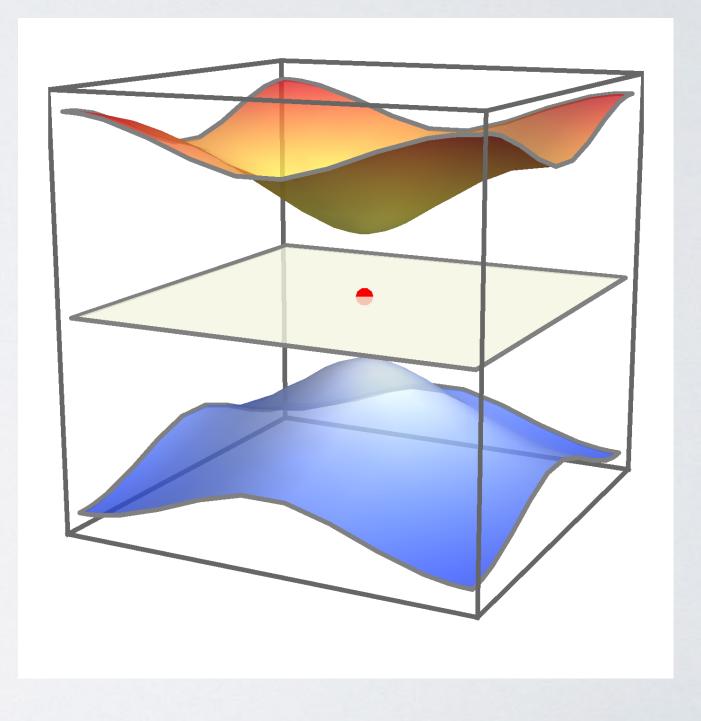
$$\sigma_z H_{\mathrm{TB}}(\vec{k})\sigma_z = -H_{\mathrm{TB}}(\vec{k})$$

Dimerized and finite-size Lieb lattice

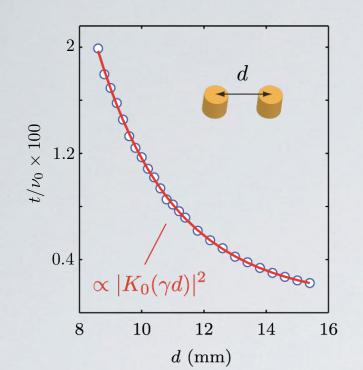
2 steps to select and spatially confined one (polarized) zero mode



- Dirac point is lifted by dimerization of the couplings
- In a finite lattice only one of the defect modes is compatible with the boundary conditions
- We select the zero mode polarized on the minority sublattice (B sites)

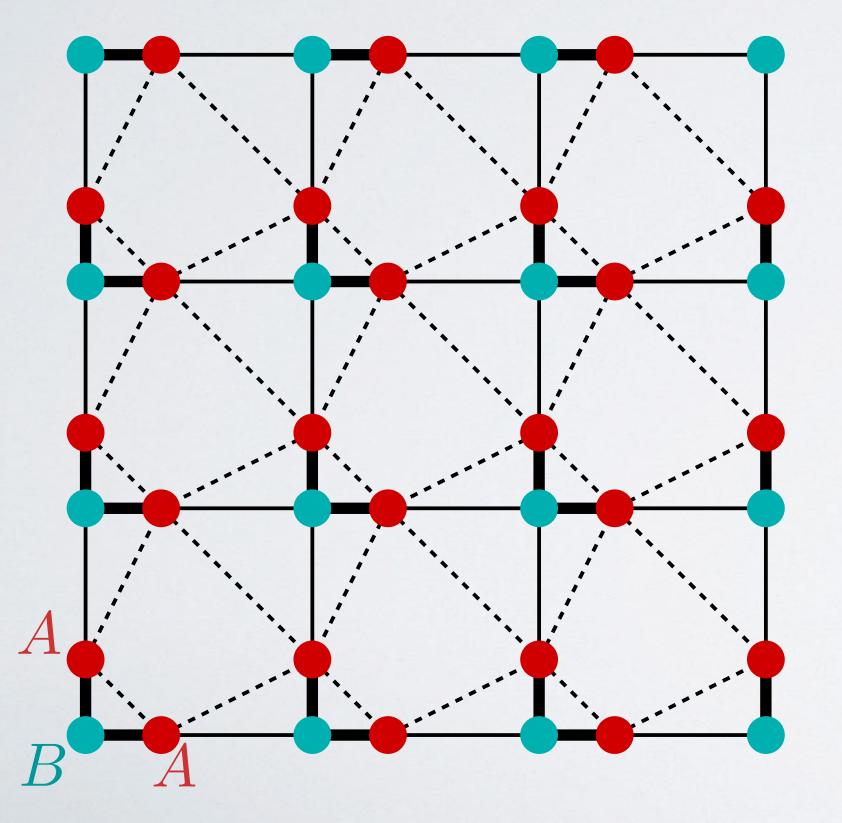


The selected zero mode is still spectrally degenerated with the flat band



Partial breaking of chiral symmetry

Depending on the lattice parameters, next-nearest-neigbor couplings can be induced

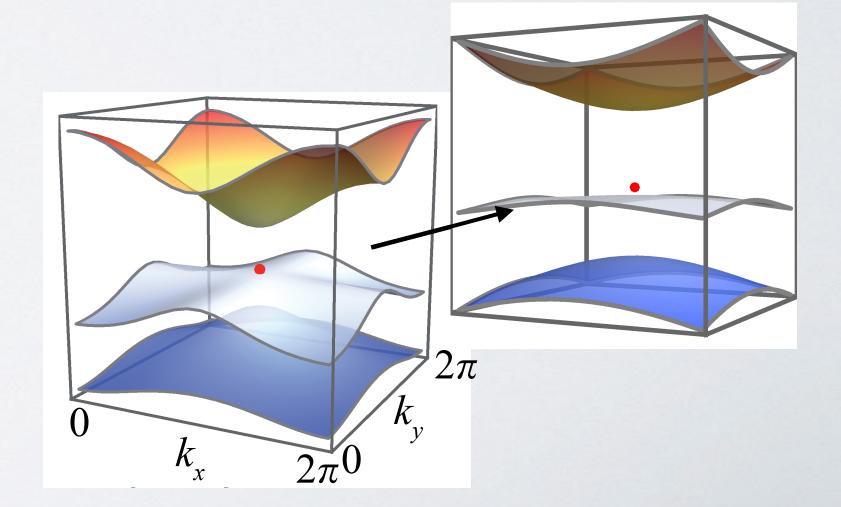


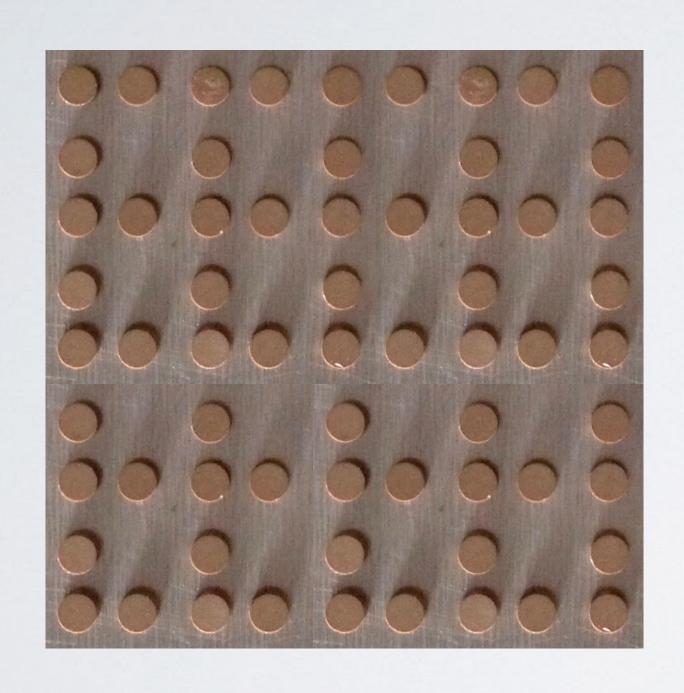
- the chiral symmetry of the majority sublattice is broken
- minority sublattice preserves its chirality

$$H_{\mathrm{TB}}(\vec{k}) = egin{pmatrix} t_{AA}(\vec{k}) & t_{AB}(\vec{k}) \\ t_{BA}(\vec{k}) & 0 \end{pmatrix}$$

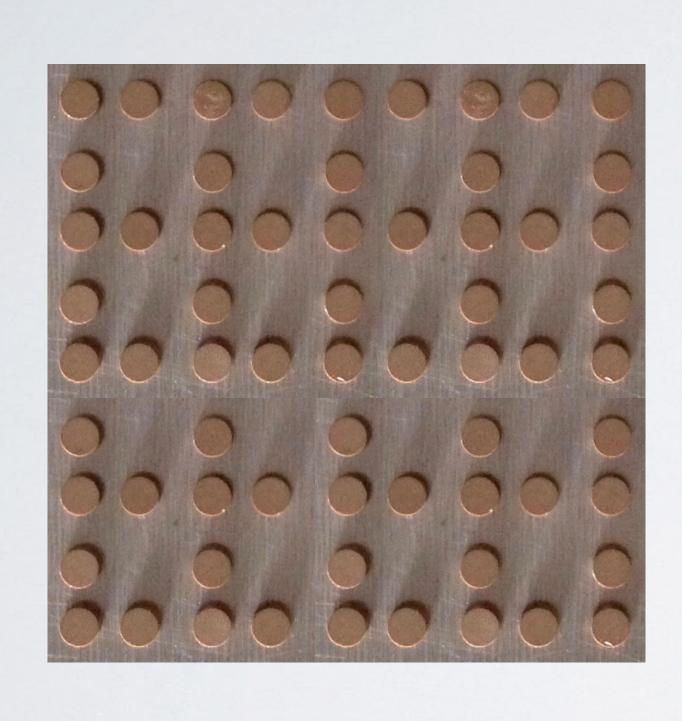
$$\left[\sigma_z H_{\rm TB}(\vec{k})\sigma_z\right]_{BB} = \left[-H_{\rm TB}(\vec{k})\right]_{BB}$$

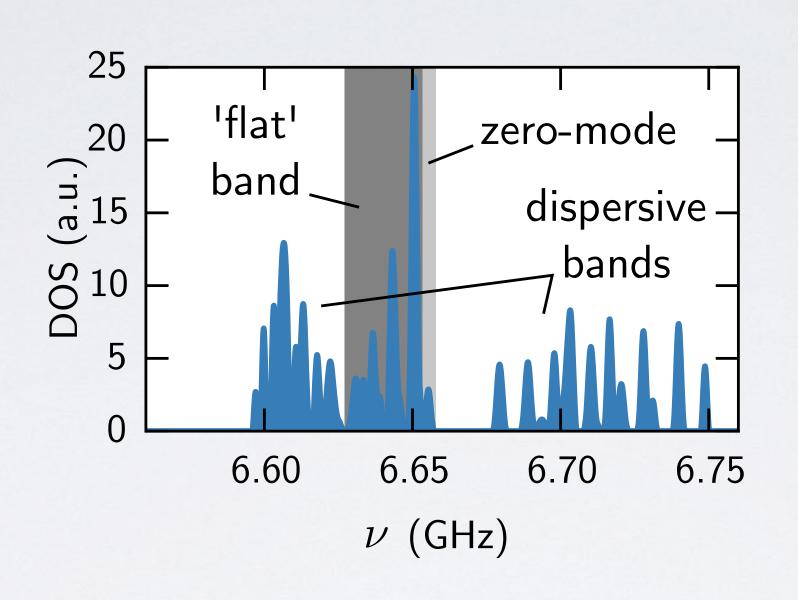
- the flat band becomes dispersive
- the zero-mode is lifted away



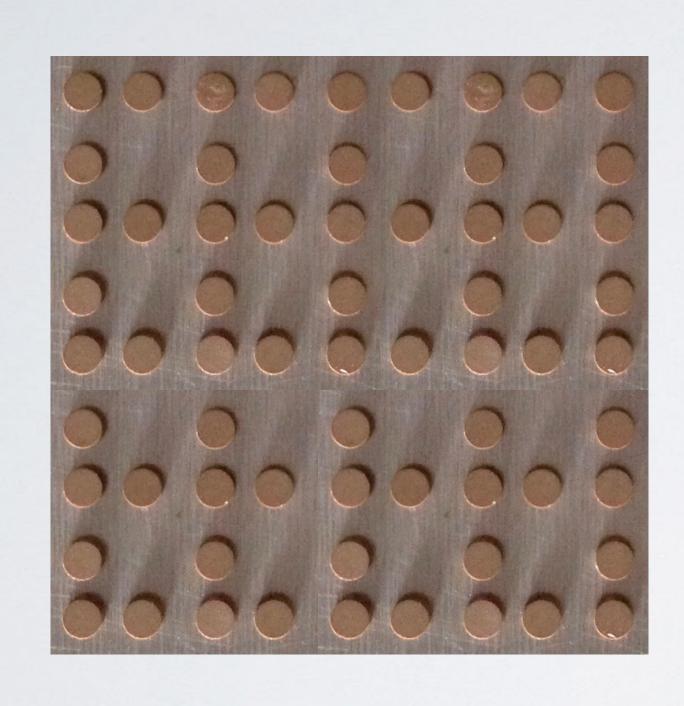


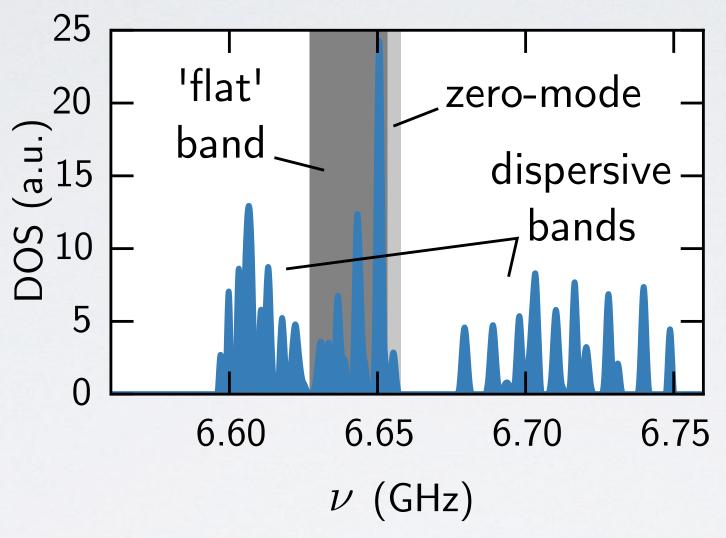
- 65 resonators
- 2 distances: 12 & 15 mm
- 2 couplings: 37 & 12MHz

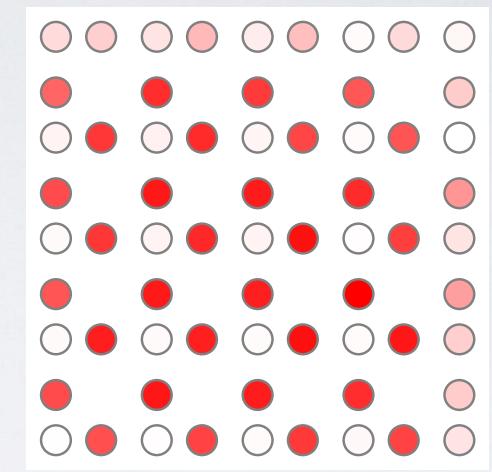


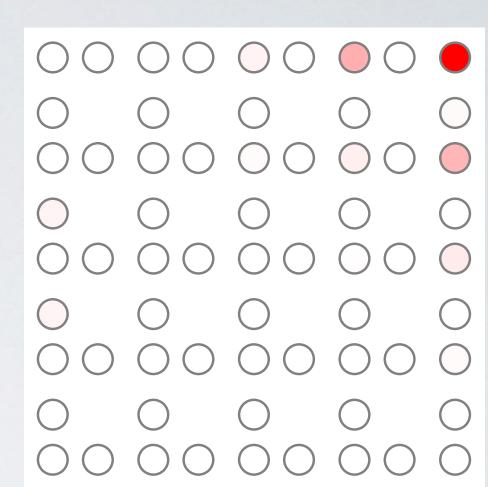


- 65 resonators
- 2 distances: 12 & 15 mm
- 2 couplings: 37 & 12MHz

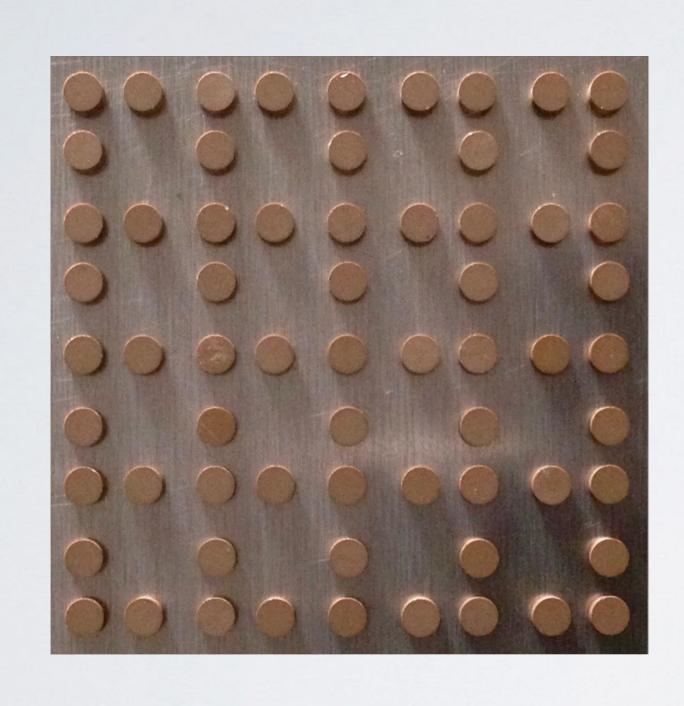


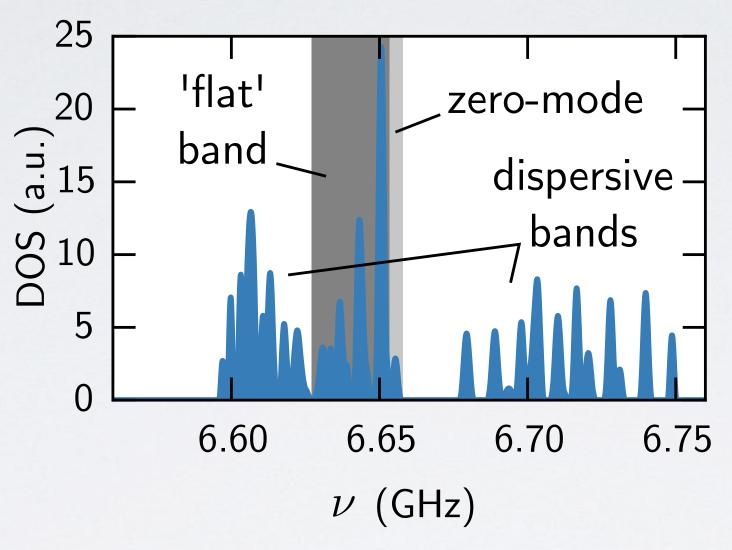


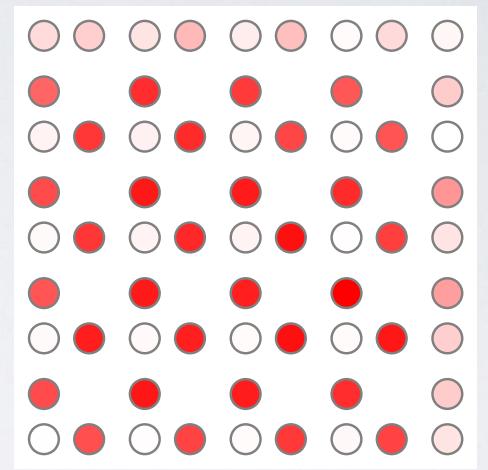


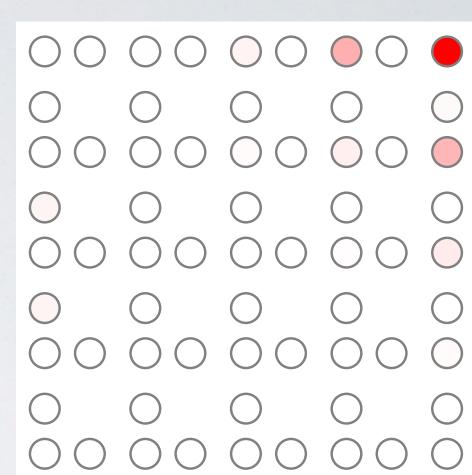


- 65 resonators
- 2 distances: 12 & 15 mm
- 2 couplings: 37 & 12MHz

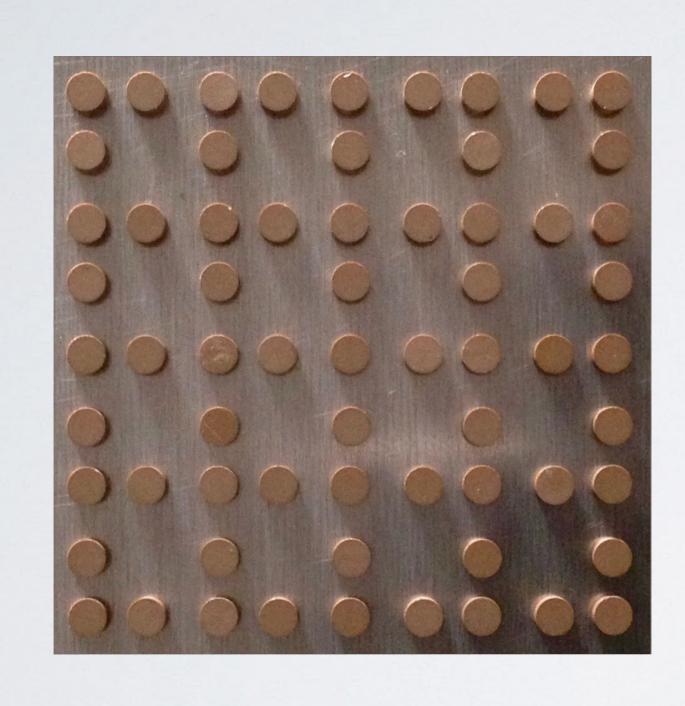




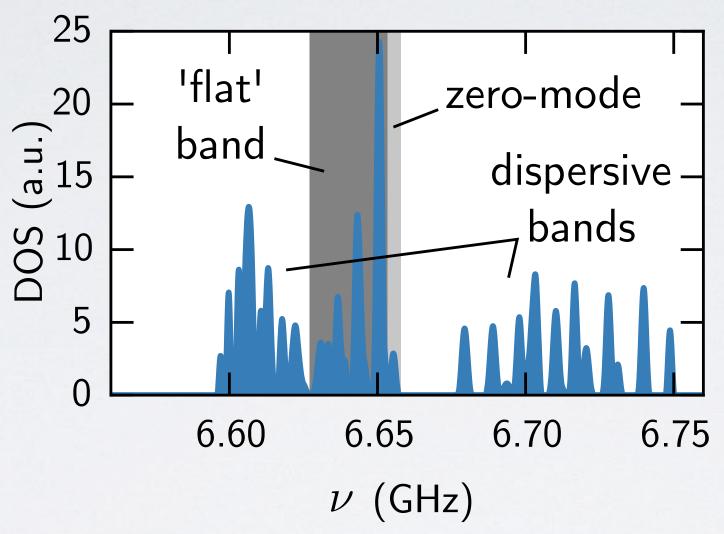


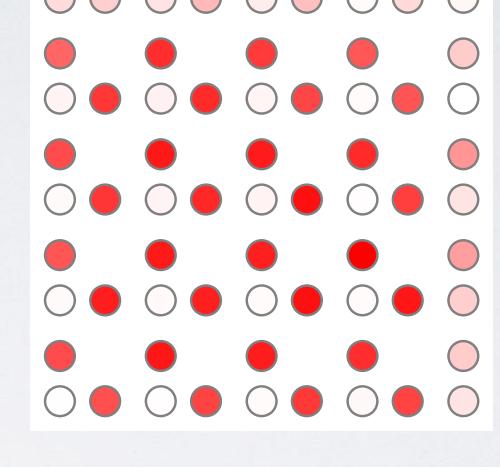


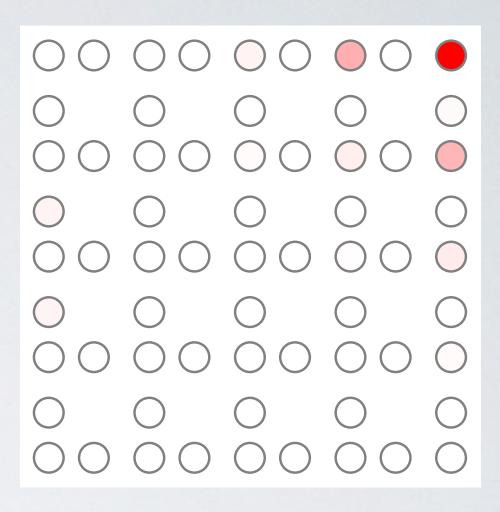
- 65 resonators
- 2 distances: 12 & 15 mm
- 2 couplings: 37 & 12MHz

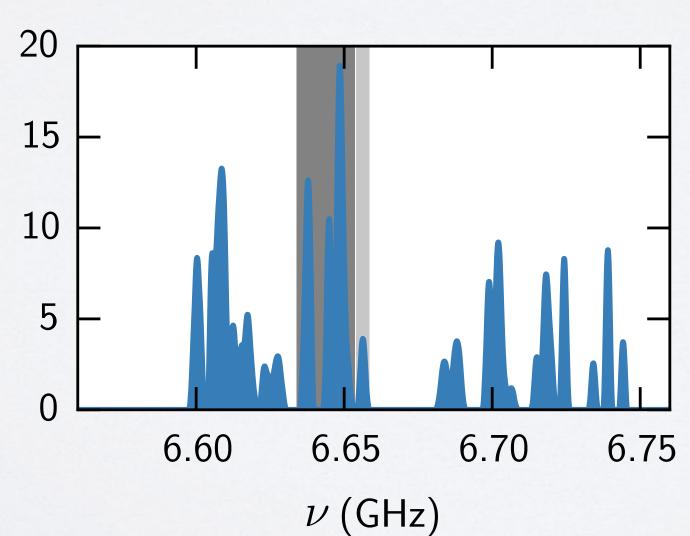


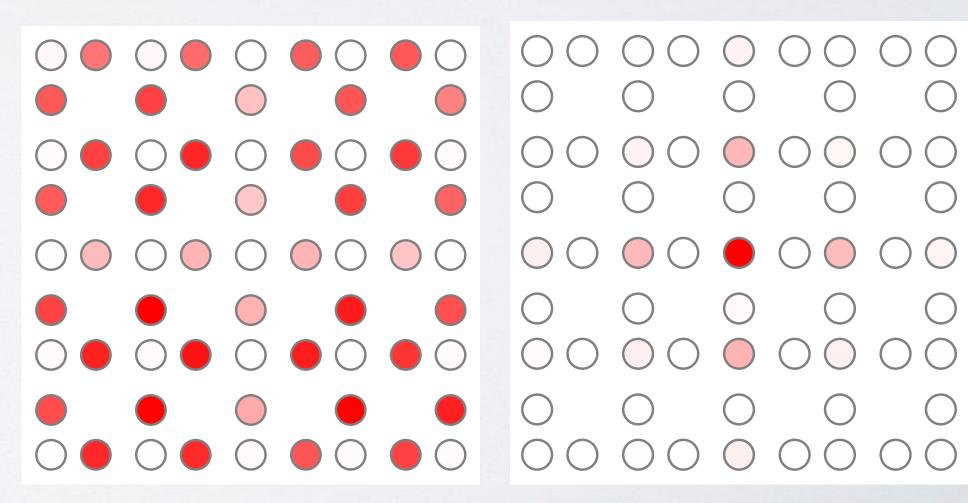
- 65 resonators
- 2 distances: 12 & 15 mm
- 2 couplings: 37 & 12MHz

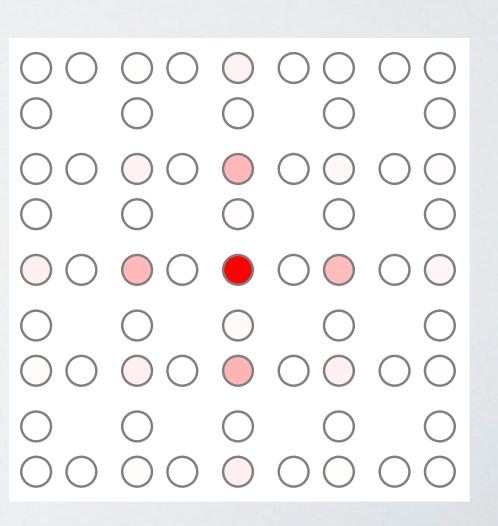








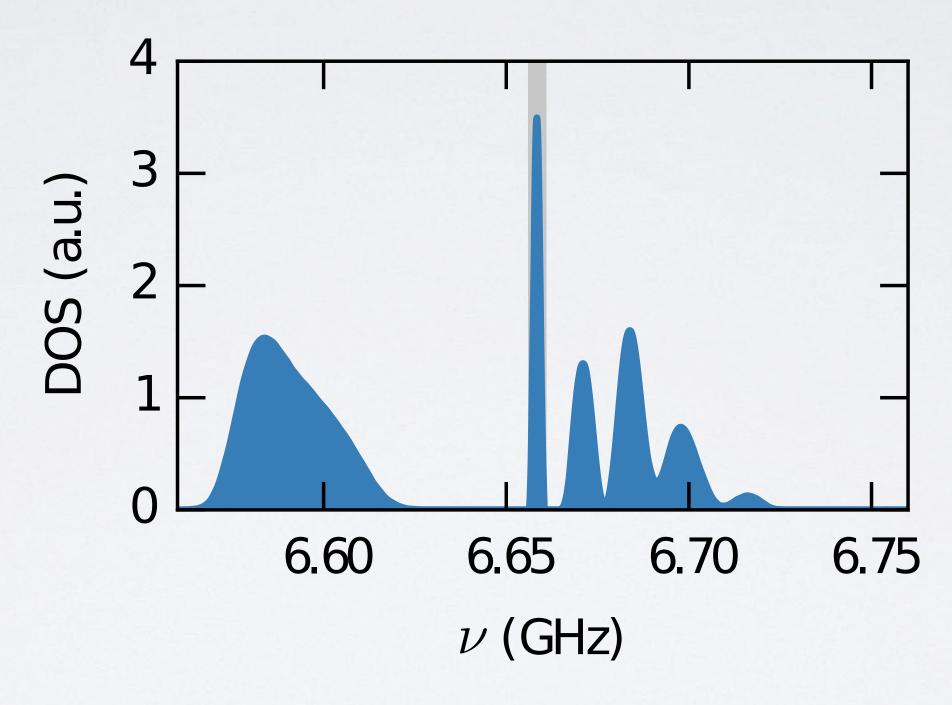


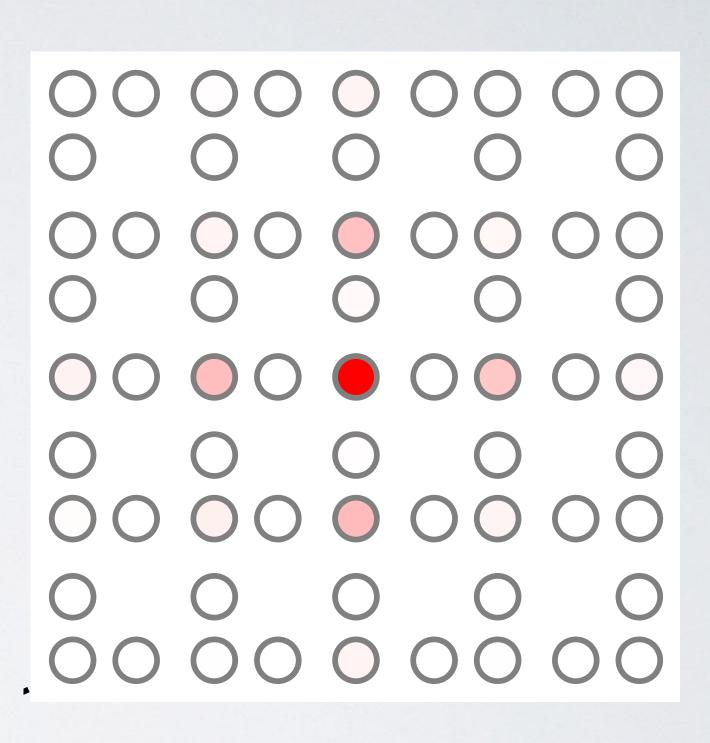


Selective enhancement

Elastomer patches induce local losses on the majority sublattice



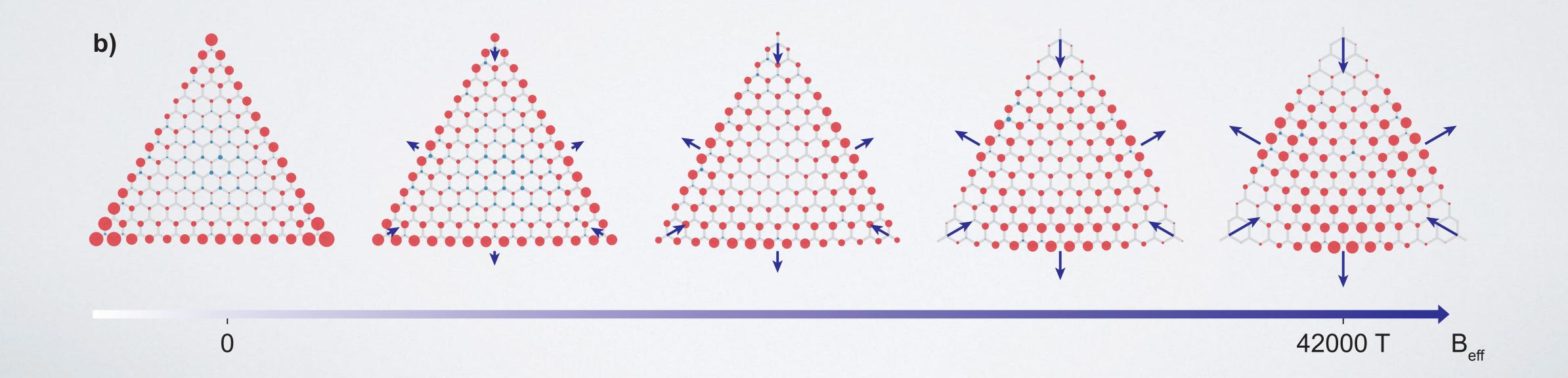




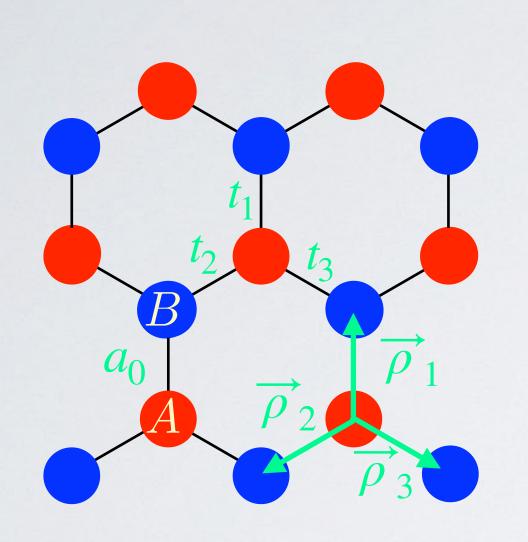
- the flat band disappears
- the half-polarized dispersive bands are drastically altered
- the defect state dominates the spectrum, while its shape is unaffected

Pseudo-Landau levels

Gigantic pseudomagnetic fields reveal the topological secrets of Landau levels



Non-uniformly strained graphene



Effective Dirac Hamiltonian in the low-energy approximation

$$H = c\eta\sigma_x(px - A_x) + c\sigma_y(p_y - A_y)$$
 $A_x = \eta \frac{1}{3a_0t_0}$ $A_y = \eta \frac{t_2 - t_3}{\sqrt{3}a_0t_0}$ $c = 3a_0t_0/2$

$$A_{x} = \eta \frac{2t_{1} - t_{2} - t_{3}}{3a_{0}t_{0}}$$

$$A_{y} = \eta \frac{t_{2} - t_{3}}{\sqrt{3}a_{0}t_{0}}$$

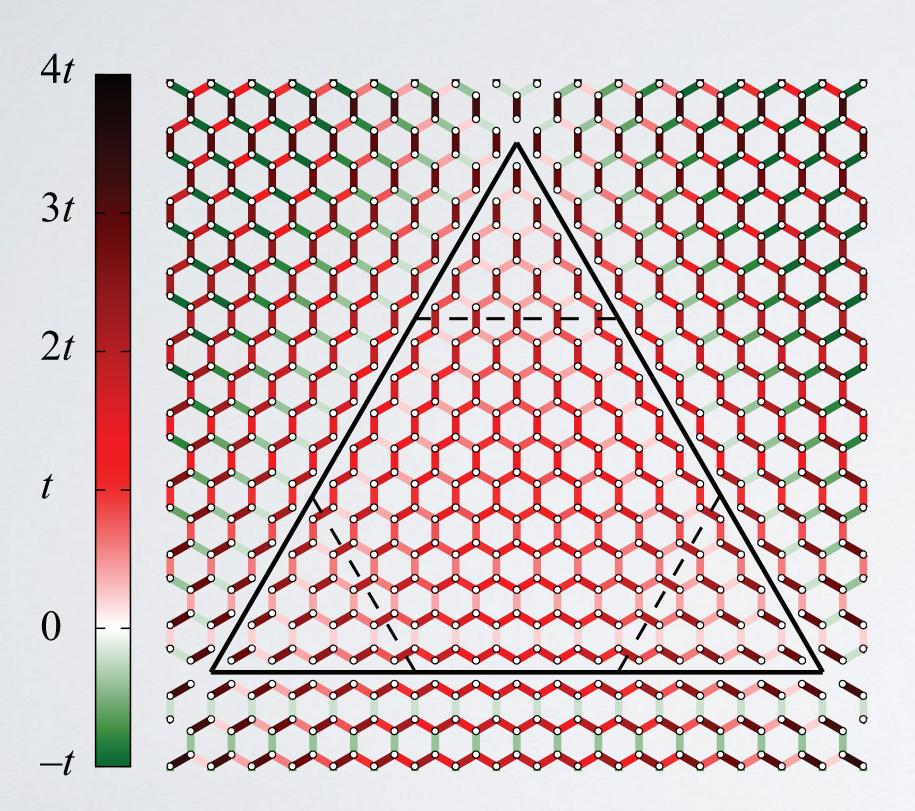
$$c = 3a_{0}t_{0}/2$$

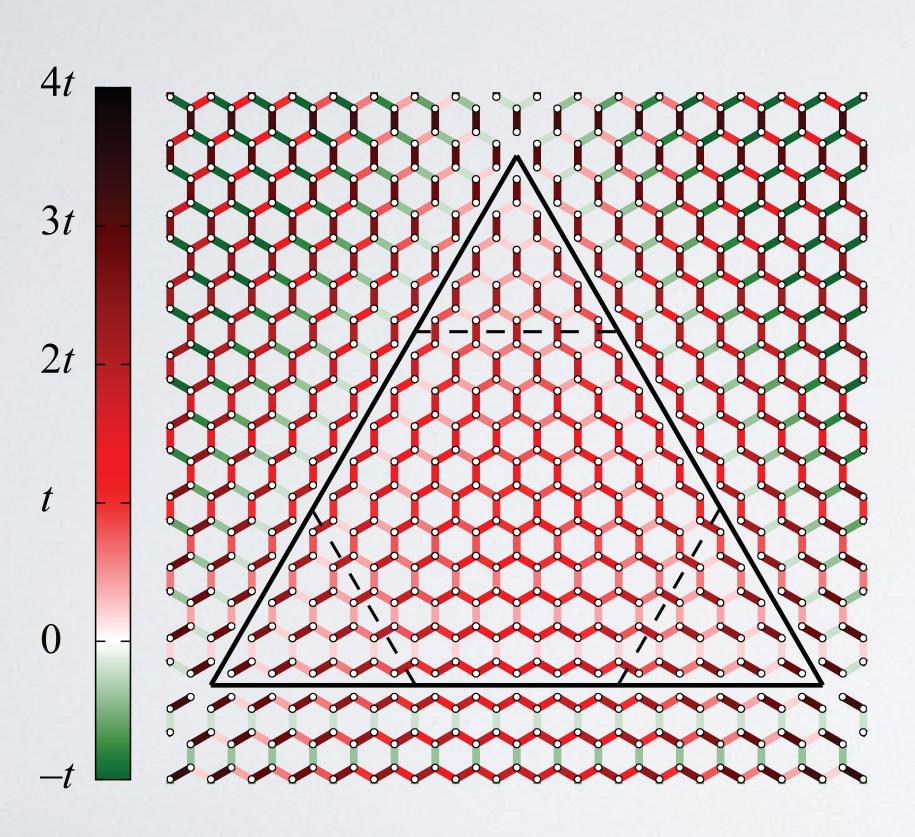
Maximal pseudo-magnetic field obtained for a triaxial strain

$$t_i(\vec{r}) = t_0 \left[1 - rac{eta}{2a_0^2}
ho_i \cdot \vec{r}
ight] \quad eta$$
 gives the strength of the magnetic field

$$\ell_M = \sqrt{1/|\beta|}$$

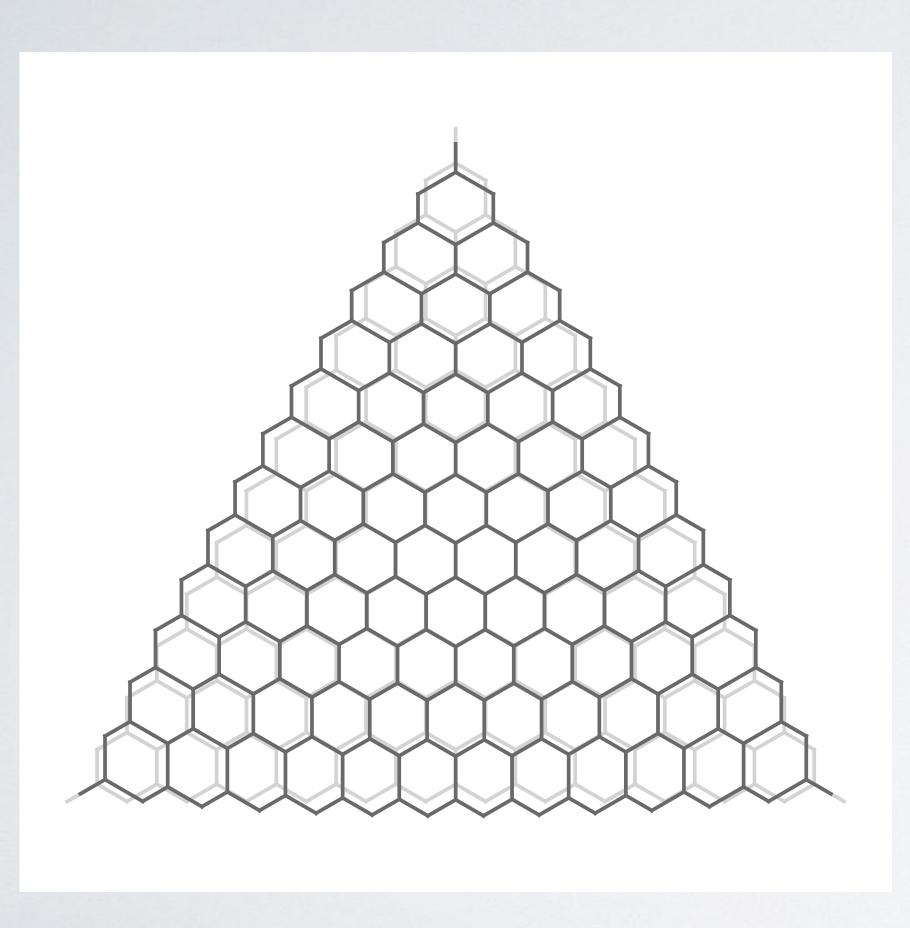
Pseudo-Landau level : $E_n = \operatorname{sgn}(n)\hbar c\sqrt{2|n\beta|}$





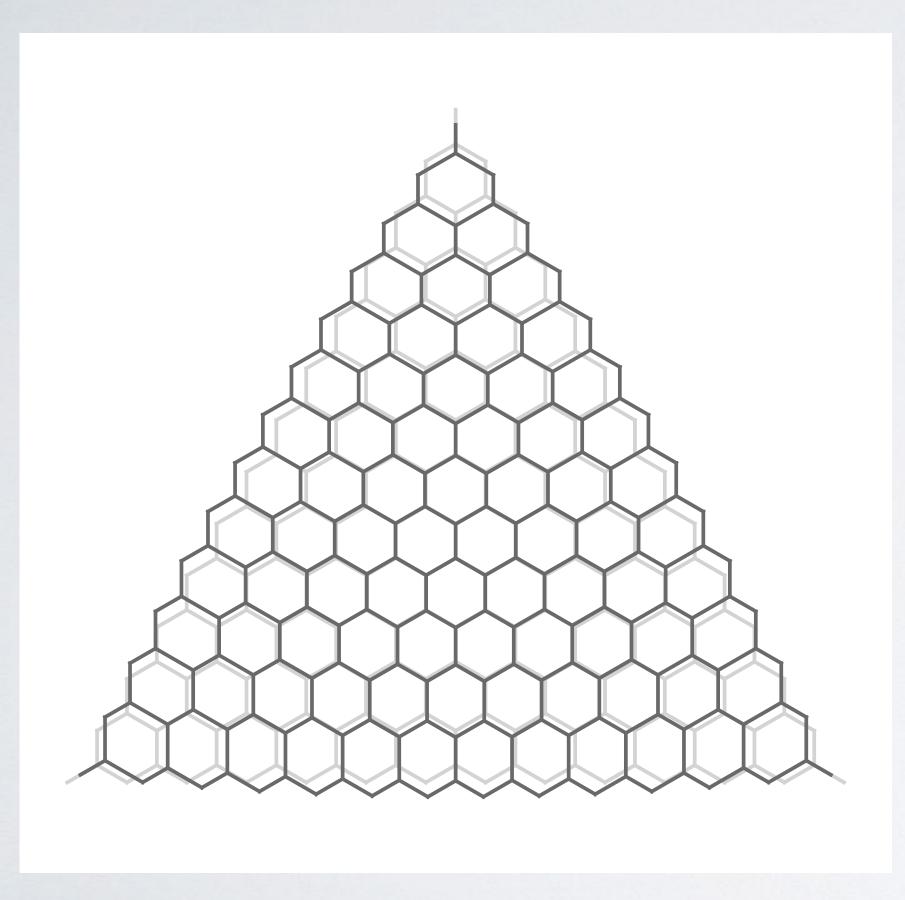
Triangular shape with full zig-zag edges

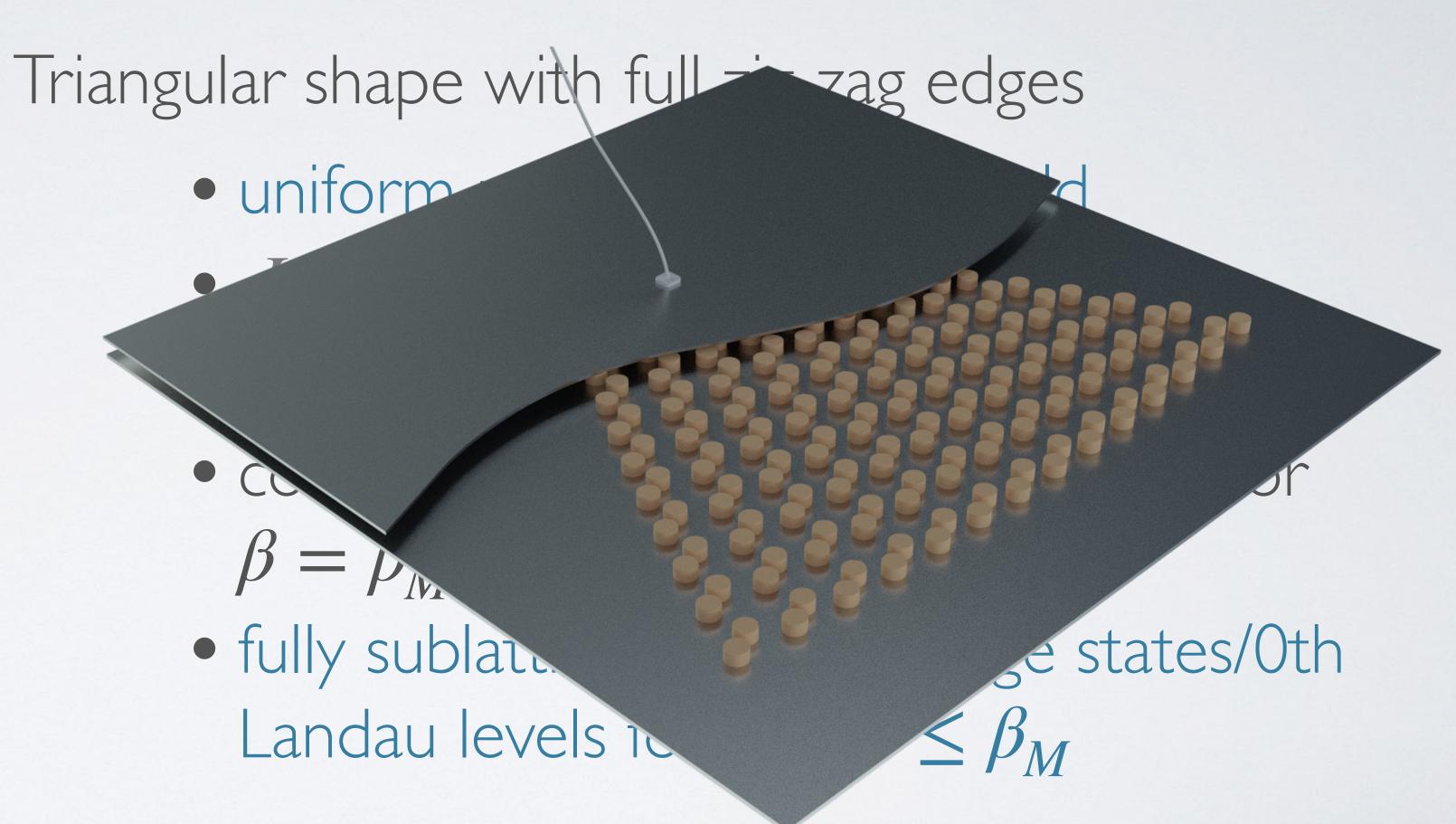
- uniform pseudo-magnetic field
- L sites on each zig-zag edge
- maximal pseudo-field strength $\beta_m = 4/L$
- coupling drop to zero at the edges for $\beta=\beta_M$
- fully sublattice-polarized edge states/0th Landau levels for $0 \le \beta \le \beta_M$

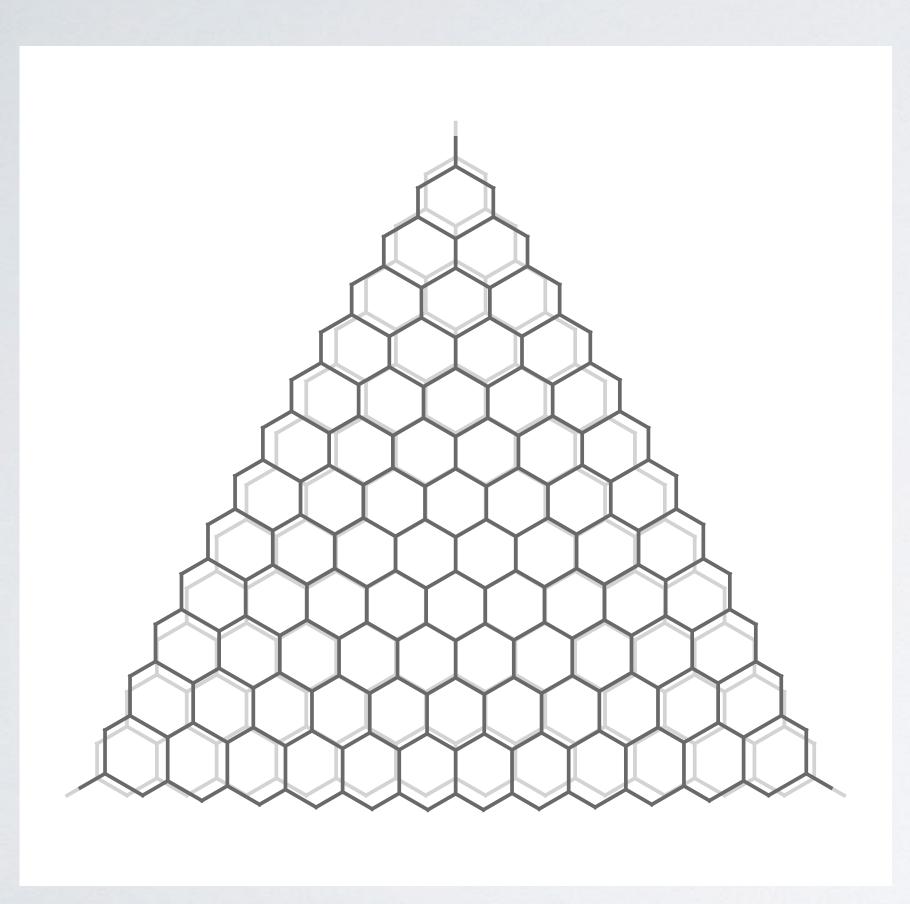


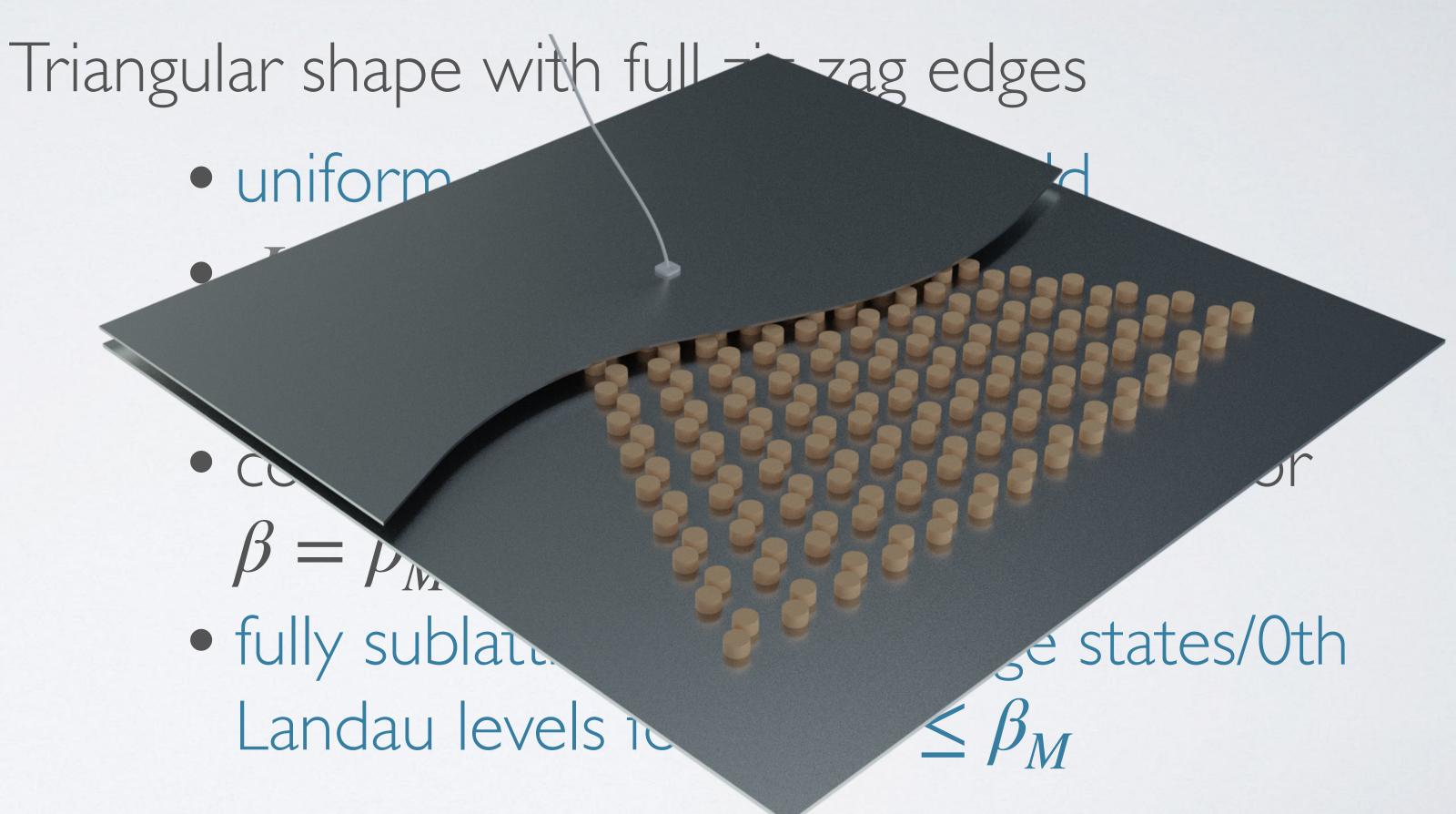
Triangular shape with full zig-zag edges

- uniform pseudo-magnetic field
- L sites on each zig-zag edge
- maximal pseudo-field strength $\beta_m = 4/L$
- coupling drop to zero at the edges for $\beta=\beta_M$
- fully sublattice-polarized edge states/0th Landau levels for $0 \le \beta \le \beta_M$



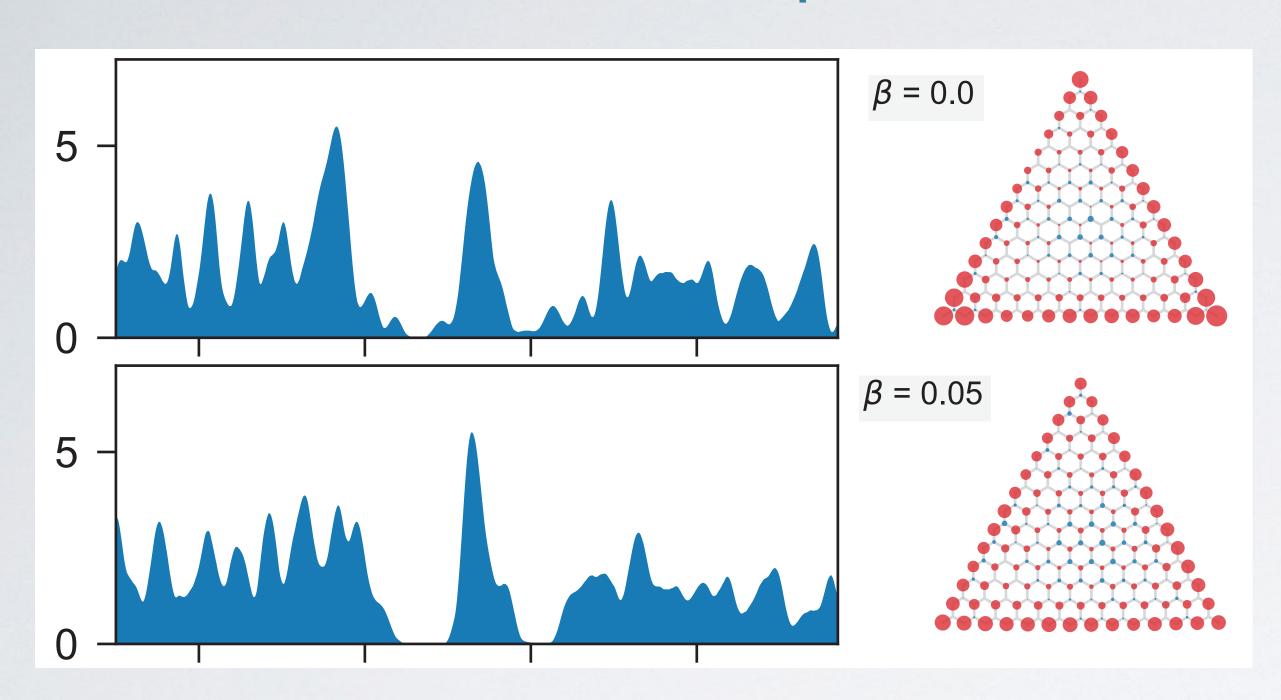


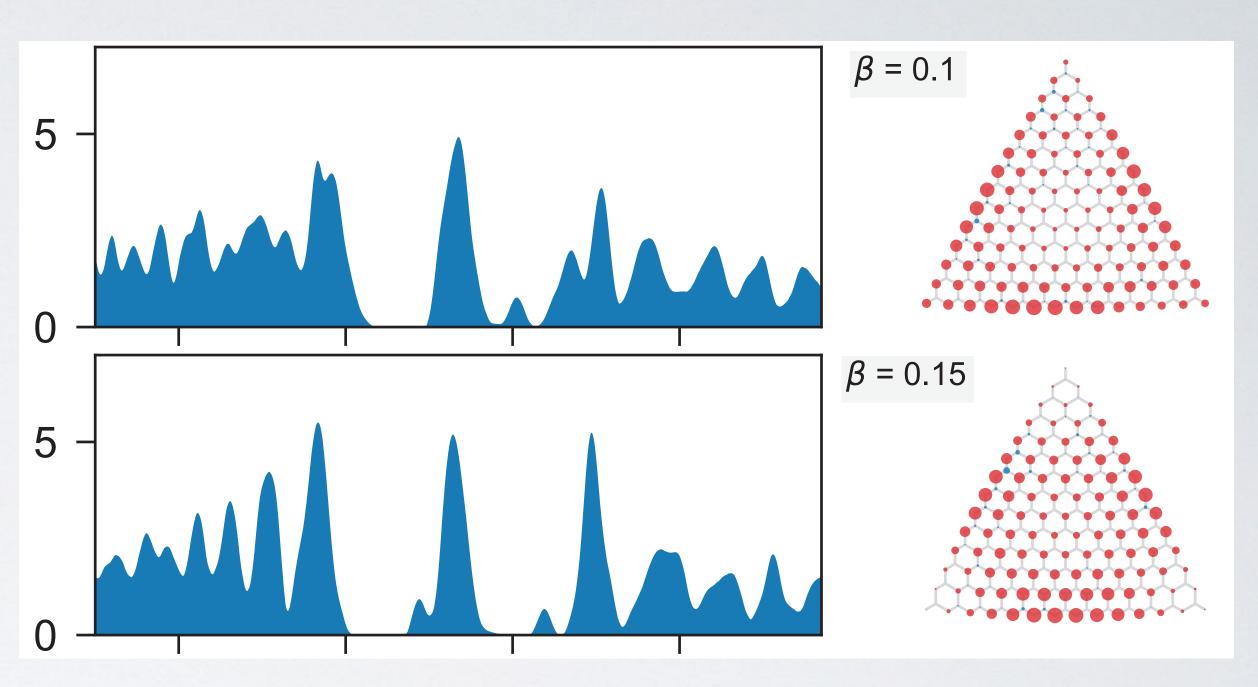




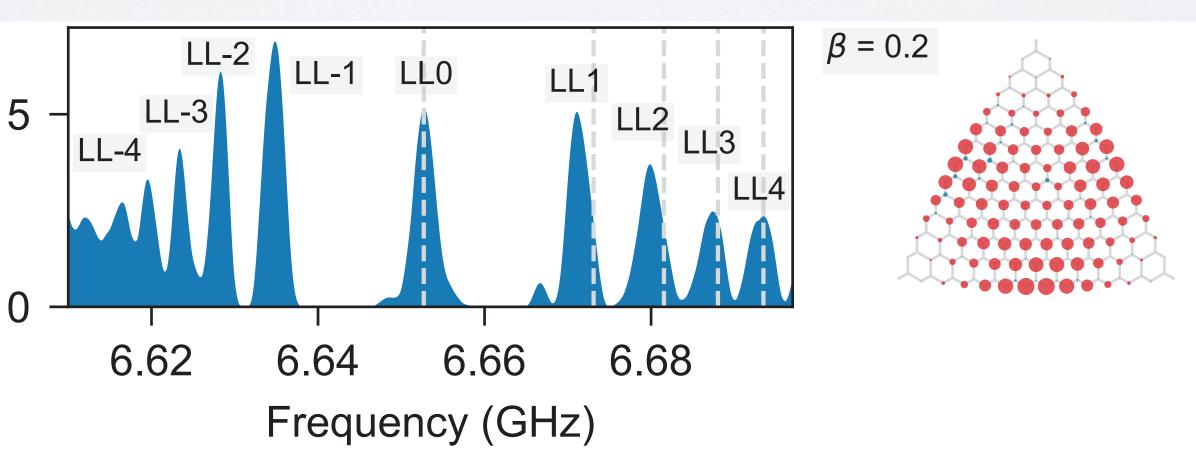
pLL degeneracy driven by the perimeter (not the surface): L - |n|

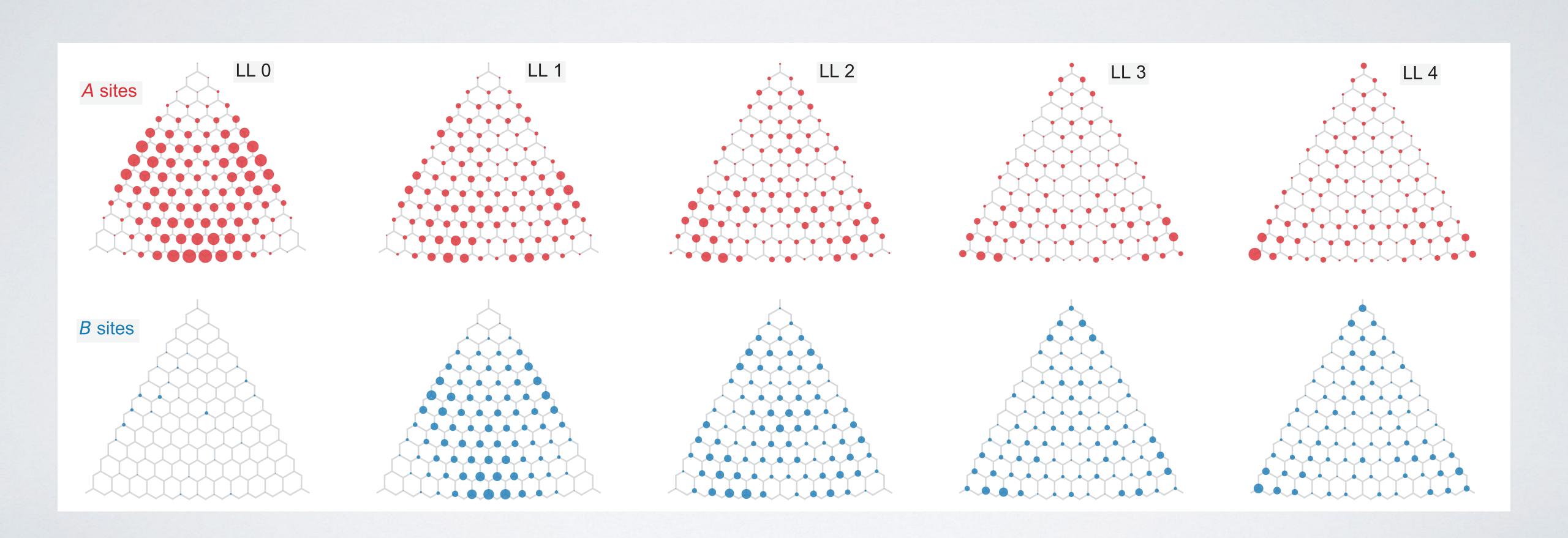
And the pseudo-Landau levels were!

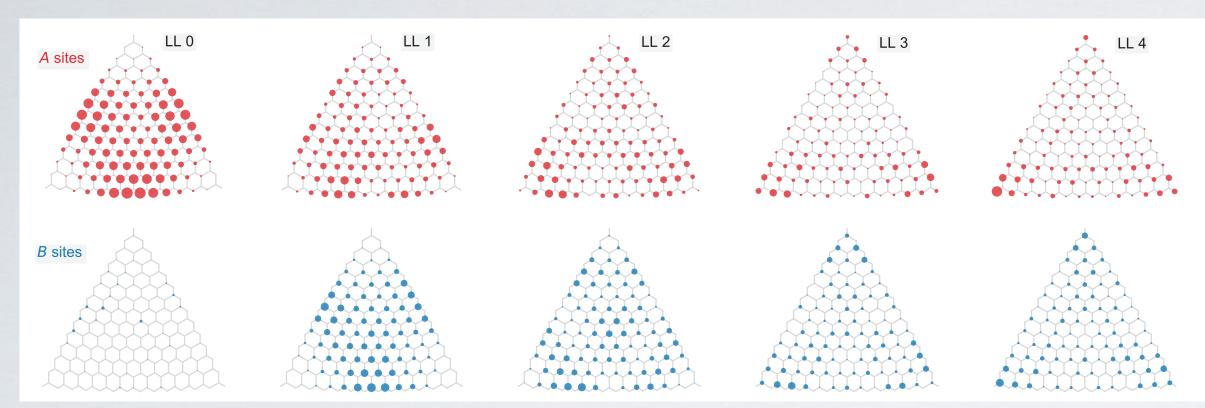




position $\sim \sqrt{n\beta}$ degeneracy $\sim L - |n|$

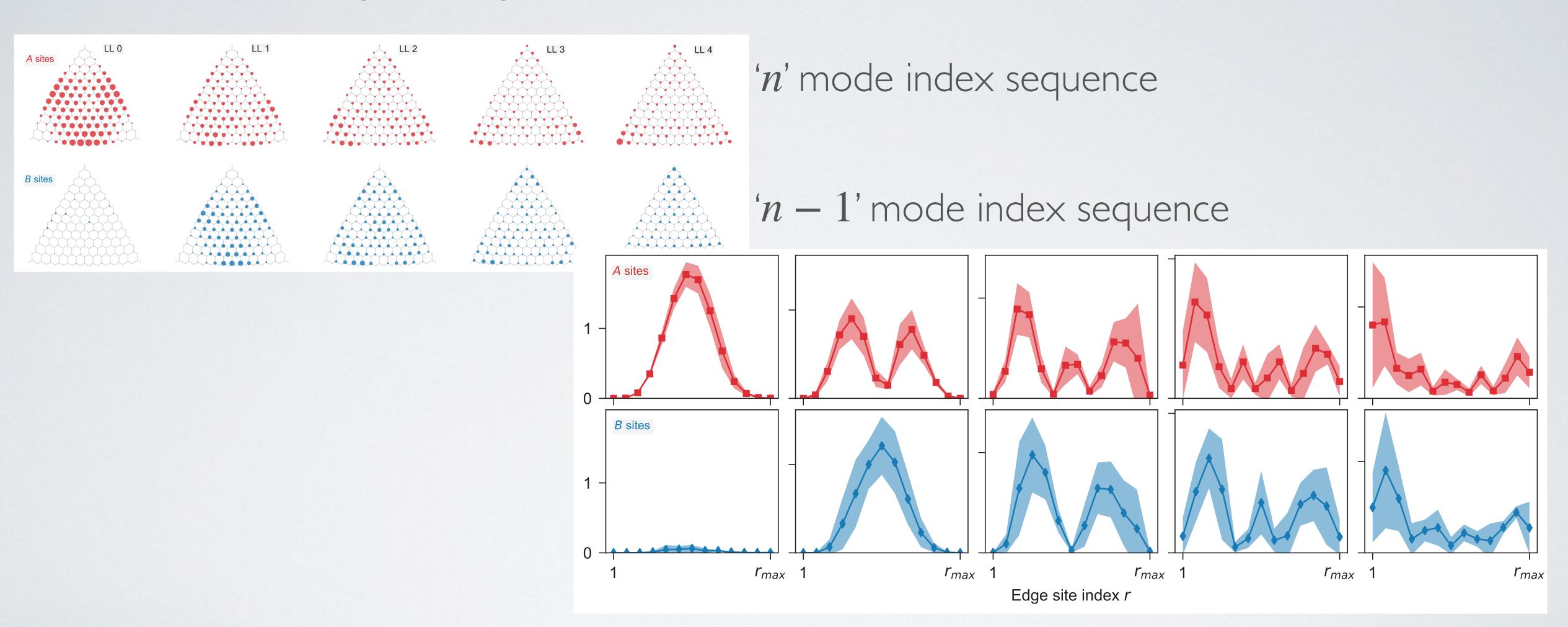


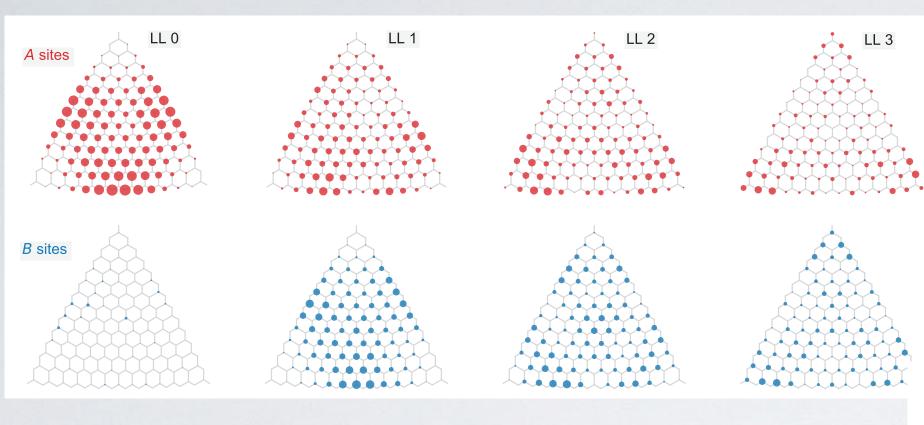




'n' mode index sequence

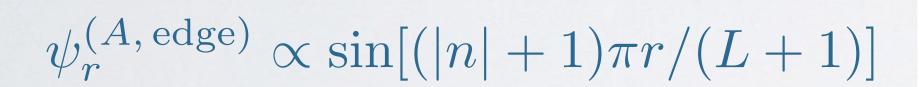
'n-1' mode index sequence



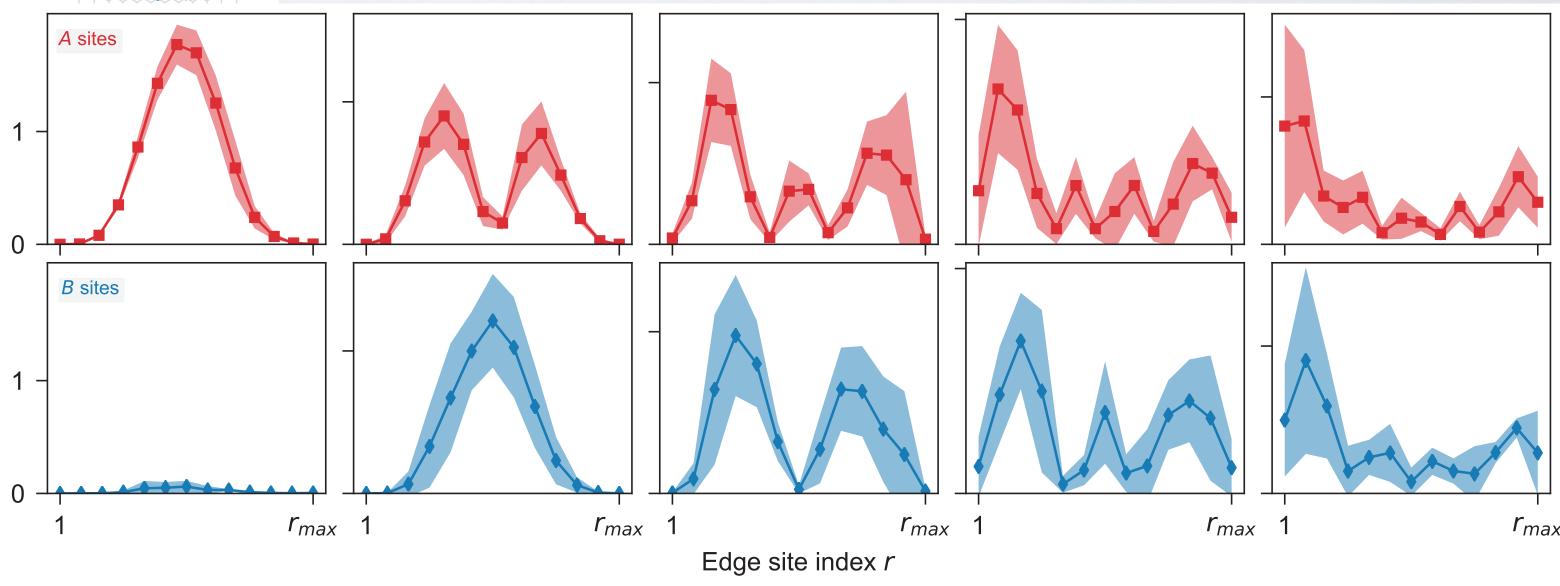


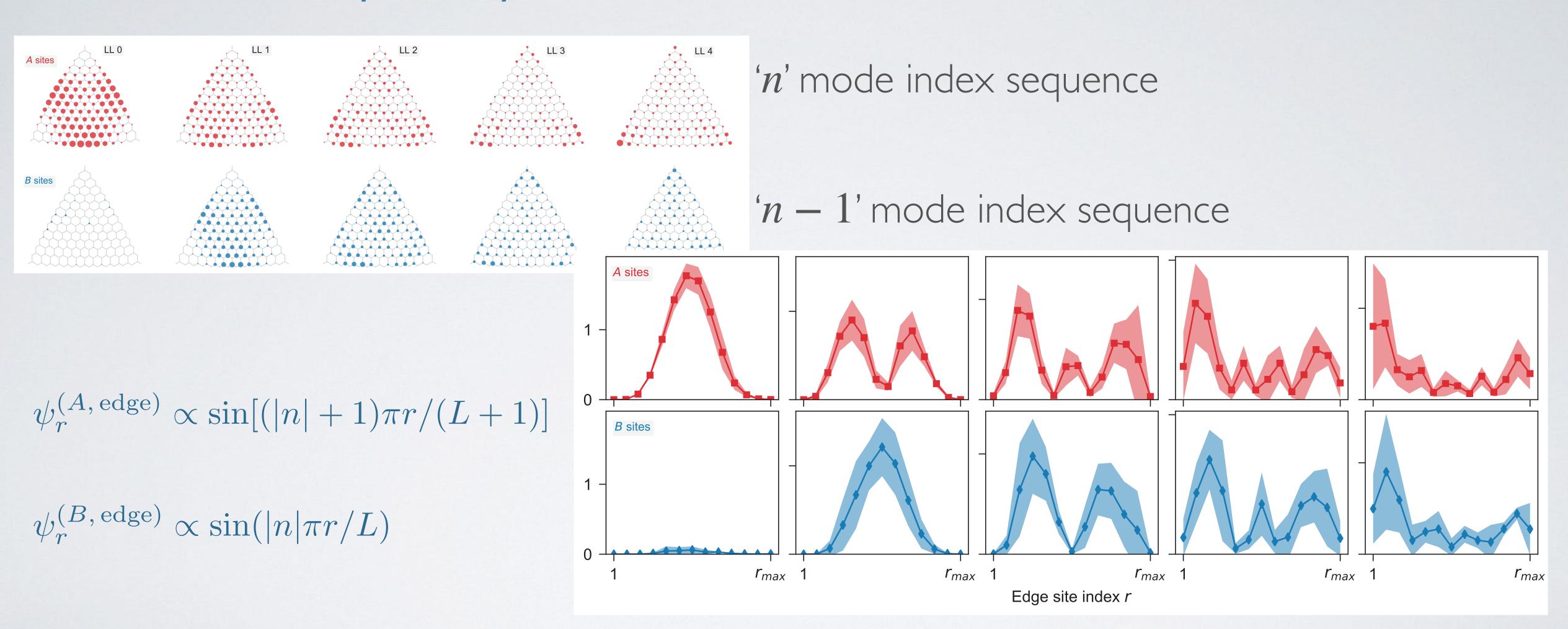
'n' mode index sequence

'n-1' mode index sequence



$$\psi_r^{(B,\,\mathrm{edge})} \propto \sin(|n|\pi r/L)$$





Offsets of the level sequence and nodal patterns both arise from an effective 'supersymmetric' harmonic oscillator Hamiltonian.

Merci Gilles!

