Bruit hors d'équilibre généré par un Gradient de température
Rencontres de Moriond 1996 (Les Arcs)
T. Martin, G. Montambaux and J. Tran Thanh Van (eds.)
Correlated Fermions and Transport in Mesoscopic Systems

Rencontres du Vietnam 1999 (Hanoi)

Rencontres de Moriond 2001 (Les Arcs)
T. Martin, G. Montambaux and J. Tran Thanh Van (eds.)
Electronic correlations: from meso to nanophysics

Rencontres du Vietnam 2006 (QuyNhon)
T. Martin, D. Mailly, Nguyen Van Hieu, B. Plaçais, and J. Tranh Thanh Van (eds.)
Nanophysics, from fundamentals to applications
« Noise in Mesoscopic Physics »

Contents

1. Introduction .. 287
2. Poissonian noise .. 289
3. The wave packet approach 291
4. Generalization to the multi-channel case 294
5. Scattering approach based on operator averages 295
 5.1. Average current .. 296
 5.2. Noise and noise correlations 299
 5.3. Zero frequency noise in a two terminal conductor 299
 5.3.1. General case 299
 5.3.2. Transition between the two noise regimes 300
 5.4. Noise reduction in various systems 301
 5.4.1. Double barrier structures 301
 5.4.2. Noise in a diffusive conductor 302
 5.4.3. Noise reduction in chaotic cavities 303
6. Noise correlations at zero frequency 304
 6.1. General considerations 304
 6.2. Noise correlations in a Y-shaped structure 305
7. Finite frequency noise 307
 7.1. Which correlator is measured? 307
 7.2. Noise measurement scenarios 308
 7.3. Finite frequency noise in point contacts 310
8. Noise in normal metal-superconducting junctions 310
 8.1. Bogoliubov transformation and Andreev current 311
 8.2. Noise in normal metal-superconductor junctions 314
 8.3. Noise in a single NS junction 316
 8.3.1. Below gap regime 316
 8.3.2. Diffusive NS junctions 317
 8.3.3. Near and above gap regime 319
 8.4. Haldane-Hubbard model with two superconducting sources 321
 8.4.1. S-matrix for the two beam splitter 321
 8.4.2. Sub-gap regime 324
 8.4.3. Near and above gap regime 325
9. Noise and entanglement 326
 9.1. Filtering spin/energy in superconducting forks ... 327
 9.2. Transferring approach to entanglement 329
 9.3. Bell inequalities with electrons 330
10. Noise in Luttinger liquids 333
 10.1. Edge states in the fractional quantum Hall effect .. 337
 10.2. Transport between two quantum Hall edges 340
 10.3. Self-biasing for tansing 342
 10.4. Backscattering current 344
 10.5. Poissonian noise in the quantum Hall effect 346
Rio BARBAIRA

Descente : 3 h
La descente peut commencer par un joli saut de 8 m, depuis le pont, puis une courte marche amène à un toboggan ; puis un rappel évitable rive droite, et la suite n'est qu'un enchaînement de jolies vasques, sauts à vérifier au préalable, mais jamais obligatoires ; la descente est ponctuée de quelques rappels, dans une partie semi-souterraine, dont la voûte est tapissée de concrétions de tufs. On sort de la partie resserrée et une longue partie de marche mène à l'ultime saut, depuis le barrage.

Retour pédestre : 10 mn
Après la dernière vasque, sortir sur la droite et un sentier mène au village.

Pratique
Au retour, repas pionigréal et accueil chaleureux chez "Roberto" à droite sur la place, vaste terrasse.
So much noise...

- **Definition**

 Noise: *n.* 1. A sound that is loud, unpleasant, unexpected or undesired

 2. **Physics** A disturbance, especially a random and persistent one, that obscures or reduces the clarity of the signal

- **Noise in mesoscopic physics**

 - **fluctuations** of the current around its average value

 - typically defined as

 \[
 S_{ij} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} dt \int_{-\infty}^{\infty} dt' \langle \Delta l_i(t) \Delta l_j(t + t') \rangle
 \]

- **Just a disturbance?**

 - noise contains information not present in the time-averaged current sensitive to the effective charge, statistics of the tunneling carriers

 - a **key tool** to study quantum transport in nanoscale devices

 ➡️ "The noise is the signal" R. Landauer
Different kinds of noise

- Typically viewed as 2 contributions with different underlying physics

- **Thermal noise** [Johnson, Nature 119, 50 ('27) - Nyquist, Phys. Rev. 32, 110 ('28)]
 - first measured by Johnson, and explained by Nyquist
 - random motion of electrons from thermal fluctuations
 - increases with temperature
 - present *even at equilibrium* (no bias)

- **Shot noise** [Schottky, Annalen der Physik 362, 541 ('18)]
 - potential bias \Rightarrow flow of discrete charges
 - electrons are transferred or reflected
 - related to the granularity of charge carriers
 - out-of-equilibrium regime
Noise from a temperature difference: Delta-\(T\) noise

What if the non-equilibrium situation arises from a \textit{temperature bias}?

- Noise in \(T\)-biased junctions [Shein-Lumbroso et al., Nature 562, 240 (’18)]
 - atomic-scale junction between gold leads
 - no voltage but finite temperature bias \(\Delta T\)
 - finite excess noise \(\Delta S = S - S_{\text{Th}}\)

Completely overlooked contribution to the noise dubbed \textit{“\(\Delta T\)-noise”}

- Distinct from the \textit{“canonical”} contributions
 - purely \textit{thermal} in origin
 - relies on \textit{partitioning}
 - out-of-equilibrium only

\(\rightarrow\) Delta-\(T\) noise corresponds to temperature-activated shot noise
Delta-\(T\) noise and scattering theory

Setup
- normal leads, spinless electrons
- transmission \(\tau(E) \approx \tau\)
- no voltage but finite temperature bias \(T_{R,L} = \bar{T} \pm \frac{\Delta T}{2}\)

Current
\[
\langle \hat{i}(t) \rangle = \frac{e}{\hbar} \int dE \tau [f_R(E) - f_L(E)] = 0, \forall (T_R, T_L)
\]

Noise
\[
S = 2 \int dt \left[\langle \hat{i}(t)\hat{i}(0) \rangle - \langle \hat{i}(t) \rangle \langle \hat{i}(0) \rangle \right]
\]
\[
= 2 \frac{e^2}{\hbar} \int dE \left\{ \tau [f_R (1 - f_R) + f_L (1 - f_L)] + \tau (1 - \tau) (f_R - f_L)^2 \right\}
\]
\[
\approx 4 \frac{e^2}{\hbar} \tau \bar{T} + 4 \frac{e^2}{\hbar} \tau (1 - \tau) \frac{\bar{T}}{9} \left(\frac{\Delta T}{2\bar{T}} \right)^2
\]

\(\Delta T\) noise

Delta-\(T\) noise is naturally described by scattering theory!
A new probe gaining momentum

- Cold reservoir [Laroque et al., Phys. Rev. Lett. 125, 106801 ('20)]

- tunnel junction under large temperature bias
 \[T_{\text{Hot}} \gg T_{\text{Cold}} \sim 0 \implies \bar{T} = \Delta T \]

- noise thermometry \(S = 2 \frac{k_B T_{\text{noise}}}{R} \)
A new probe gaining momentum

- Cold reservoir [Laroque et al., Phys. Rev. Lett. 125, 106801 ('20)]

 tunnel junction under large temperature bias
 \[T_{\text{Hot}} \gg T_{\text{Cold}} \sim 0 \implies \bar{T} = \Delta T \]

- noise thermometry \[S = 2 \frac{k_B T_{\text{noise}}}{R} \]

- noise goes from \[\frac{2k_B}{R} \frac{T_{\text{Hot}} + T_{\text{Cold}}}{2} \] to \[\frac{2 \log 2k_B}{R} T_{\text{Hot}} \]

- extremely good agreement with scattering theory

 combined effect of \(\Delta T \) and \(\Delta \mu \) ensuring zero current

 accounts for energy-dependent transmission \(\tau(\epsilon) \)

 ratio of noise contributions is bounded
 \[R_I = \frac{S_{\text{shot}}}{S_{\text{thermal}}} \leq 1 \]

 extension to heat current/noise

- Problem: non-interacting fermions only. Can this be extended?
Effect of interactions on the Delta-\(T\) noise

- **Deep Kondo regime** [Hasegawa et al., arXiv:2008.08839]
 - resonant level and local Coulomb repulsion
 - extreme regime: \(T_L \gg T_R \sim 0 \implies \bar{T} = \Delta T \)
 - leading order contribution with coefficient
 \(C_T = 6\zeta(3) - 4\zeta(2) + \left[\frac{11}{2} \zeta(3) + (3 \log 2 - 4) \zeta(2) \right] (R - 1)^2 \)

- **Coulomb blockade** [Sivré et al., Nat. Comm. 10, 5638 (‘19)]
 - metallic node connected to a resistance
 \(R = R_K/N \) and one electronic channel
 - \(\Delta T \)-noise measurements reproduced by theory with a Coulomb renormalized transmission
 - \(\Delta T \)-noise and Coulomb interaction lead to an additional quantum heat transport mechanism
Effect of interactions on the Delta-\(T\) noise

 - resonant level and local Coulomb repulsion
 - extreme regime: \(T_L \gg T_R \sim 0 \implies \bar{T} = \Delta T\)
 - leading order contribution with coefficient
 \[C_T = 6\zeta(3) - 4\zeta(2) + \left[\frac{11}{2}\zeta(3) + (3 \log 2 - 4)\zeta(2)\right] (R - 1)^2\]

- Coulomb blockade [Sivré et al., Nat. Comm. 10, 5638 (‘19)]
 - metallic node connected to a resistance \(R = R_K/N\) and one electronic channel
 - \(\Delta T\)-noise measurements reproduced by theory with a Coulomb renormalized transmission
 - \(\Delta T\)-noise and Coulomb interaction lead to an additional quantum heat transport mechanism

\(\Delta T\)-noise is a valuable tool to better understand quantum transport phenomena. Sensitivity to interactions worth exploiting in other platforms.
Quantum Hall effect

- 2D electron gas (2DEG) under strong magnetic field (and low temperature)
- Resistivity vs. magnetic field
 - sharp peaks in longitudinal resistivity, zero in between
 - plateaus of transverse resistivity at quantized values $\propto \frac{1}{n}$
- Single electron picture works great
 - Landau levels
- Edge states
 - classical picture: skipping orbits
 - 1d, chiral edge states
 - topological nature, immune to disorder or defects
Fractional quantum Hall effect

- Better samples ➞ new features in the Hall resistivity
 - intermediate plateaus for non-integer values of filling factor
 - partially filled Landau levels
 - failure of the single electron picture: Coulomb interaction is critical
 - Laughlin series $\nu = \frac{1}{2n+1}$

- Similar edge states to IQH...
 - 1D, chiral, topological edge states act as a beam of charge carriers
 - ... with a major difference: building blocks are anyons

- $e^* = \nu e$
 - fractional charge $e^* = \nu e$
 - fractional statistics $\phi = \pi \nu$
FQH and shot noise

- Quantum point contact: controllable overlap between edge states
 - equivalent to a beam splitter
 - weak vs. strong backscattering

- Experimental proof of the fractional charge at $\nu = 1/3$ [Saminadayar et al., Phys. Rev. Lett. 79, 2526 (’97) - de Picciotto et al., Nature 389, 162 (’97)]
 - weak backscatt. $T \ll 1$
 - current $I_B = T I_0$
 - Poissonian regime $\langle \Delta N^2 \rangle = \langle N \rangle$
 - noise $S_B = 2 e^* I_B$

shot noise \rightarrow granularity of the charge \rightarrow effective charge $e^* = \frac{e}{3}$

What about ΔT noise? Anything to be learned from it?
(Sketchy) theoretical description

- Setup considered
 - Hall bar equipped with a QPC
 - Laughlin series $\nu = \frac{1}{2n+1}$
 - different temperatures T_R, T_L
 - possible potential bias V

- Effective theory: hydrodynamical approach [Wen, IJMP. B 6, 1711 ('92)]
 - incompressible, irrotational liquid \rightarrow surface waves
 - after quantization, theory formulated in terms of a density operator ρ
 bosonized effective theory corresponds to a chiral Luttinger liquid model

- Propagation Hamiltonian
 $$H_0 = \frac{\nu}{4\pi} \int dx \left[(\partial_x \phi_R)^2 + (\partial_x \phi_L)^2 \right]$$
 with $\rho_{R/L}(x) = \pm e^{\frac{\nu}{2\pi}} \partial_x \phi_{R/L}(x)$ and $[\phi_{R/L}(x), \phi_{R/L}(y)] = \pm i\pi \text{Sgn}(x - y)$

- bosonization identity
 $$\Psi_{R/L}(x, t) \propto \frac{1}{2\pi a} e^{-i\frac{1}{\sqrt{\nu}}\phi_{R/L}(x, t)}$$
 for electrons
 $$\psi_{R/L}(x, t) \propto \frac{1}{2\pi a} e^{-i\sqrt{\nu}\phi_{R/L}(x, t)}$$
 for quasiparticles
Computing current and noise

- **Tunneling Hamiltonian**
 \[H_{WB} = \Gamma_0 e^{ie^* V_t} \psi_R^\dagger(0) \psi_L(0) + \text{H.c.} \]

 - **Backscattered current**
 \[I_B(t) = ie^* \Gamma_0 e^{ie^* V_t} \psi_R^\dagger(0, t) \psi_L(0, t) + \text{H.c.} \]

 - **average value**
 \[\langle I_B(t) \rangle = 2i \frac{e^* \Gamma_0^2}{(2\pi a)^2} \int_{-\infty}^{\infty} d\tau \sin (e^* V \tau) \exp [\nu G_R(\tau) + \nu G_L(\tau)] \]

 - **Zero-voltage case**
 \[\langle I_B(t) \rangle \xrightarrow{V \to 0} 0 \] independently of \(T_R, T_L \)

 - **Fluctuations (leading order in \(\Gamma_0 \))**
 \[S_B = 2 \int d\tau \ [\langle I_B(\tau) I_B(0) \rangle - \langle I_B(\tau) \rangle \langle I_B(0) \rangle] \]
 \[= \left(\frac{e^* \Gamma_0}{\pi a} \right)^2 \int_{-\infty}^{\infty} d\tau \cos (e^* V \tau) \exp [\nu G_R(\tau) + \nu G_L(\tau)] \]
Main results: weak backscattering regime and $\Delta T \ll \bar{T}$

- Weak temperature difference $T_R \simeq T_L$
 - average temperature $\bar{T} = \frac{T_R + T_L}{2}$
 - temperature difference $\Delta T = T_R - T_L \ll \bar{T}$

- No simple analytic form \implies Perturbative expansion in ΔT

\[S_B = S_{WB}^0 \left[1 + C^{(2)}_\nu \left(\frac{\Delta T}{2\bar{T}} \right)^2 + C^{(4)}_\nu \left(\frac{\Delta T}{2\bar{T}} \right)^4 \right] \]

with $C^{(2)}_\nu = \nu \left\{ \frac{\nu}{2\nu + 1} \left[\frac{\pi^2}{2} - \psi'(\nu + 1) \right] - 1 \right\}$

$\implies C^{(2)}_{\nu=1}$ recovers scattering theory

$\implies C^{(2)}_\nu < 0$ for the Laughlin series!

- noise reduction in presence of a bias?
 \implies interactions play an important role
Strong backscattering regime

Can this signature be solely attributed to the strong interaction along the edge?

- Strong backscattering regime

\[H_{WB} = \Gamma_0 \psi_R^\dagger (0) \psi_L (0) + \text{H.c.} \]

\[S_{\Delta T} \propto C^{(2)} (\Delta T)^2 \]

\[C^{(2)} = C^{(2)}_\nu < 0 \]

qp tunneling

\[H_{SB} = \Gamma \psi_R^\dagger (0) \psi_L (0) + \text{H.c.} \]

\[S_{\Delta T} \propto \tilde{C}^{(2)} (\Delta T)^2 \]

\[\tilde{C}^{(2)} = C^{(2)}_{1/\nu} > 0 \]

e\text{tunneling}

- Interesting in 2 ways
 - potential experimental detection may be easier
 - importance of quasiparticle tunneling
Conclusions

- Peculiar signatures from a temperature bias across a QPC in the FQH
 - Negative ΔT-noise

- Associated with the tunneling of Laughlin quasiparticles
 - suggests an interplay of interaction and statistics

- Reverts to a positive contribution in the strong backscattering regime
 or under a large voltage bias

- This signature should be accessible experimentally

- Further explore the connection with anyonic statistics

- Extension to more exotic states, beyond Laughlin
 - more complex structure of the edge: neutral modes, $\nu = 5/2$?

Negative delta-\textit{T} noise in the Fractional Quantum Hall effect

J. Rech, T. Jonckheere, B. Grémaud, and T. Martin,

Perspectives:

Delta T noise in non-symmetric junctions of the FQHE
Exact solution for (1, 1/3) junction via refermionization
Linear contribution on top of quadratic contribution:

Finite frequency delta T noise?
Microwave photons emitted from a mesoscopic device driven by a temperature gradient
Voltage dependence

- Finite voltage case ➞ extension to voltage-dependent coefficients

\[S_B = S_{WB}^0 (V, \bar{T}) \left\{ 1 + \left(\frac{\Delta T}{2 \bar{T}} \right)^2 C_\nu^{(2)}(V) + O \left(\frac{\Delta T}{2 \bar{T}} \right)^4 \right\} \]

- Analytic expression

\[C_\nu^{(2)}(V) = -\nu + \frac{\nu^2 + \left(\frac{e^* V}{2\pi \bar{T}} \right)^2}{2\nu + 1} \left\{ -2\pi \text{Im} \, \psi \left(\nu + 1 + i \frac{e^* V}{2\pi \bar{T}} \right) \tanh \left(\frac{e^* V}{2 \bar{T}} \right) \right. \]
\[\left. + \frac{\pi^2}{2} + 2 \left[\text{Im} \, \psi \left(\nu + 1 + i \frac{e^* V}{2\pi \bar{T}} \right) \right]^2 - \text{Re} \, \psi' \left(\nu + 1 + i \frac{e^* V}{2\pi \bar{T}} \right) \right\} \]

- Main results

- voltage-dependent coefficients \(C_\nu^{(2)}(V) \) and \(C_\nu^{(4)}(V) \)
- \(\Delta T \) contributions drowned out at large voltage
- \(C_\nu^{(2)}(V) \) sign flips at finite voltage

Should we worry about thermoelectric effects?
Thermoelectric effects vs. Delta-\(T\) noise

- **Seebeck effect**
 - electric current arising from a temperature difference
 - can in turn lead to regular shot noise
 - Is \(\Delta T\) noise just the shot noise of this thermally induced current?

- **Electrons in a normal junction** [Shein-Lumbroso et al., Nature 562, 240 (‘18)]
 - measure the thermoelectric voltage
 - calculate the associated shot noise
 - orders of magnitude smaller than \(\Delta T\)-noise

- Why it should matter even less here?
 - incompressible bulk
 - chiral edge states, overlapping only at the QPC
 - no equilibration expected over micron-size distances
Experimental realization I

- Measuring backscattered current fluctuations
 - no direct access to the noise S_B
 - possible to measure currents l_3, l_4 and their auto- and cross-correlations $S_{33}, S_{44} \text{ and } S_{34}$

- From backscattered current to measurable currents
 \[
 \langle l_3(x_3, t) \rangle = -\mathcal{I}_B + \frac{\nu e^2}{2\pi} V
 \]
 \[
 \langle l_4(x_4, t) \rangle = \mathcal{I}_B
 \]

- From backscattered current fluctuations to cross-correlations
 - Cross-correlations
 \[
 S_{34}(t - t') = \langle l_3(x_3, t)l_4(x_4, t') \rangle - \langle l_3(x_3, t) \rangle \langle l_4(x_4, t') \rangle
 \]
 - Connection with backscattered current fluctuations
 \[
 S_{34} = 2 \left(T_R + T_L \right) \frac{\partial \mathcal{I}_B}{\partial V} - S_B
 \]

\Rightarrow S_B can be measured via $S_B = 2(T_L + T_R)G_4 - S_{34}$
Experimental realization II

- Reparametrization

\[
\begin{align*}
T_L &= \bar{T} - \frac{\Delta T}{2} \rightarrow T_L = T_{\text{cold}} \\
T_R &= \bar{T} + \frac{\Delta T}{2} \rightarrow T_R = T_{\text{hot}} = T_{\text{cold}} + \Delta T
\end{align*}
\]

- Three-step measurement

1. Measure at base temperature T_{cold}

2. Heat up one entry port at T_{hot}

3. Heat up the other entry port at T_{hot}

\[
\Delta S_{\text{II}} = S_2 - S_1 = S_{\text{cold}} (2\nu - 1) \frac{\Delta T}{2T_{\text{cold}}} \times \left[1 + \left(\nu - 1 + \frac{C^{(2)}_{\nu}}{2\nu - 1} \right) \frac{\Delta T}{2T_{\text{cold}}} \right]
\]

\[
\Delta S_{\text{III}} = S_2 - \frac{1}{2} (S_1 + S_3) = S_{\text{cold}} \left[C^{(2)}_{\nu} - (2\nu - 1)(\nu - 1) \right] \left(\frac{\Delta T}{2T_{\text{cold}}} \right)^2
\]
Experimental realization II

- Reparametrization

\[
\begin{align*}
T_L &= \bar{T} - \frac{\Delta T}{2} \quad \rightarrow \quad T_L = T_{\text{cold}} \\
T_R &= \bar{T} + \frac{\Delta T}{2} \quad \rightarrow \quad T_R = T_{\text{hot}} = T_{\text{cold}} + \Delta T
\end{align*}
\]

- Three-step measurement

1. \(\rightarrow\) \(S(T_{\text{cold}}, T_{\text{cold}})\) measure at base temperature \(T_{\text{cold}}\)
2. \(\rightarrow\) \(S(T_{\text{hot}}, T_{\text{cold}})\) heat up one entry port at \(T_{\text{hot}}\)
3. \(\rightarrow\) \(S(T_{\text{hot}}, T_{\text{hot}})\) heat up the other entry port at \(T_{\text{hot}}\)

\[
\Delta S_{II} = S_{\bar{I}} - S_{\odot}
= S_{\text{cold}} (2\nu - 1) \left(\frac{\Delta T}{2T_{\text{cold}}} \right) \frac{\Delta T}{2T_{\text{cold}}}
\times \left[1 + \left(\nu - 1 + \frac{C_{\nu}^{(2)}}{2\nu-1} \right) \frac{\Delta T}{2T_{\text{cold}}} \right]
\]

\[
\Delta S_{III} = S_{\bar{I}} - \frac{1}{2} (S_{\odot} + S_{\bar{3}})
= S_{\text{cold}} \left[C_{\nu}^{(2)} - (2\nu - 1)(\nu - 1) \right] \left(\frac{\Delta T}{2T_{\text{cold}}} \right)^2
< 0 \text{ for } \nu = \frac{1}{2n+1}
\]