

Veselago lensing in Dirac materials

Jérôme Cayssol

LOMA, Université de Bordeaux

Un Tour du MontamBaux , 23/06/2022

I will talk about **Veselago lenses** (or **negative refraction**) for :

1) **The electromagnetic field** (photons)

2) Electrons in graphene pn junctions

3) Electrons and holes at graphene/superconductor interfaces

4) Chiral electrons in 3D Weyl semimetals

I) Veselago lensing with photons

SOVIET PHYSICS USPEKHI

VOLUME 10, NUMBER 4

JANUARY-FEBRUARY 1968

538.30

THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE

VALUES OF ϵ AND μ

V. G. VESELAGO

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R.

Usp. Fiz. Nauk 92, 517-526 (July, 1964)

Electromagnetic waves in matter

Dispersion of an electromagnetic wave:

$$\mathbf{k}^2 = \frac{\omega^2}{c^2} \,\epsilon_r \mu_r$$

$$n^2 = \epsilon_r \mu_r$$

Veselago (1968) considered an hypothetical material where both dielectric constant and magnetic permeability are negative (in some frequency window)

Veselago electrodynamics

$$\mathbf{k} \wedge \mathbf{E} = \omega \,\mu_0 \mu_r \,\mathbf{H}$$
$$\mathbf{k} \wedge \mathbf{H} = -\omega \,\epsilon_0 \epsilon_r \,\mathbf{E}$$

Standard situation :

 $\epsilon_r > 0 \quad \mu_r > 0$

(k,E,H) direct

Veselago situation :

 $\epsilon_r < 0 \qquad \mu_r < 0$

(k,E,H) indirect

Veselago electrodynamics

$$\mathbf{k} \wedge \mathbf{E} = \omega \,\mu_0 \mu_r \,\mathbf{H}$$
$$\mathbf{k} \wedge \mathbf{H} = -\omega \,\epsilon_0 \epsilon_r \,\mathbf{E}$$

Veselago electrodynamics

$$\mathbf{k} \wedge \mathbf{E} = \omega \,\mu_0 \mu_r \,\mathbf{H}$$
$$\mathbf{k} \wedge \mathbf{H} = -\omega \,\epsilon_0 \epsilon_r \,\mathbf{E}$$

Negative refraction of rays

Outgoing-wave

 $\mathbf{e}_x \cdot \mathbf{R}_{tr} > 0$

Negative refraction of rays

Outgoing-wave

 $\mathbf{e}_x \cdot \mathbf{R}_{tr} > 0$

Negative refraction of rays

Outgoing-wave

 $\mathbf{e}_x \cdot \mathbf{R}_{tr} > 0$

Flat lens focusing

Even a single interface can focus a beam

Experiments: metamaterials

Artificial materials with subwavelengths structures

3D metamaterial Smith (UC San Diego)

2D version of a flat lens

Elementary blocks = metallic resonators

D.R. Smith, J.B. Pendry and M.C.K. Wiltshire, Science 2004

Optics with electrons

Photons

Dispersion

Maxwell equations

Poynting vector

Optical rays

Massless bosons

Non interacting

3D Polarizations **Electrons in ballistic regime**

Electronic band structure

Schrödinger equation

Group velocity

Semiclassical trajectories of electrons

Massive fermions with charge e

e-e interactions

Quasiparticles : 3D, 2D, 1D

Spin

Suitable devices : Electronic lenses, beamsplitters, interferometers for electrons

II) Veselago lensing with massless electrons in 2D graphene

statile at the ions on the honeycomb lattice (including $\overline{\sigma}$ f s is generated by the basis vectors: tforward) main andan hene. Mon discussingsene case of spinless fermions "velocity" optimizes (σ_1^{π} and σ_2 in Eq. (27)? $-\sqrt{3}\mathbf{e}_{x}\mathbf{H}\mathbf{e}_{x}$ nodel there the the there was the matrix, but there a the length of the car the negative the simplest and most get $f_{\ell} = \frac{1}{2} \frac{1}$ vector components k_x and k_y , obtained within the tight-bin t = 0.1. The valence (π) band is di TO Kajunta Wearai Kalurorowin terotai person consideration of the particular terotai and t The triangular Bravais lattice $\mathbf{r}_{mn} = m\mathbf{a}_1 + n\mathbf{a}_2$ is generated by the basis vectors: $\mathbf{a}_1 = \sqrt{3}a\mathbf{e}_x$ and $\mathbf{a}_2 = \frac{1}{2} (\mathbf{e}_x + \sqrt{3}\mathbf{e}_z)$ No. 4. 5 1.20 1The group velocity is the $gradient \overline{of}$ Staberston relation and the consider some ratio of the honeycomb lattice (including of spin is straightforward).

n-doped graphene

In n-doped graphene, the group velocity and the wave-vector like points **in the same direction**.

p-doped graphene

In p-doped graphene, the group velocity and the wave-vector like points in **opposite directions**, like in a **negative index medium** (The same in any negatively-dispersing band)

Interface (sharp or smooth) obtained by electrostatic GATING

Veselago lensing with electrons in graphene

Arrows represent group velocities / semiclassical trajectories

The Focusing of Electron Flow and a Veselago Lens in Graphene *p-n* Junctions

Vadim V. Cheianov,^{1*} Vladimir Fal'ko,¹ B. L. Altshuler^{2,3}

2 MARCH 2007 VOL 315 SCIENCE

В

Origin of negative refraction

n-doped graphene

p-doped graphene

Origin of negative refraction

n-doped graphene

p-doped graphene

Transmission through pn junction

Perfect transmission at normal incidence

Sharp interface: $k_F d \ll 1$ $\lambda_F \simeq 10 - 100 nm$

 $T(\phi) = \cos^2 \phi$

Smooth interface : $k_F d \gg 1$

$$T(\phi) = e^{-\pi k_F d \sin^2 \phi}$$
 Collimation

Experiments in ballistic regime (2015)

nature physics

LETTERS

PUBLISHED ONLINE: 14 SEPTEMBER 2015 | DOI: 10.1038/NPHYS3460

Observation of negative refraction of Dirac fermions in graphene

Gil-Ho Lee $^{^{\dagger}}$, Geon-Hyoung Park and Hu-Jong Lee*

Focused peaks...

Experiments in ballistic regime (2016)

RESEARCH | REPORTS

GRAPHENE

Electron optics with p-n junctions in ballistic graphene

Shaowen Chen,^{1,2*} Zheng Han,^{1,7*} Mirza M. Elahi,³ K. M. Masum Habib,³† Lei Wang,⁴ Bo Wen,^{1,8} Yuanda Gao,⁵ Takashi Taniguchi,⁶ Kenji Watanabe,⁶ James Hone,⁵ Avik W. Ghosh,³ Cory R. Dean¹‡

1522 30 SEPTEMBER 2016 • VOL 353 ISSUE 6307

Encapsulated graphene (between BN layers)

GRAPHENE

Electron optics with p-n junctions in ballistic graphene

Shaowen Chen,^{1,2*} Zheng Han,^{1,7*} Mirza M. Elahi,³ K. M. Masum Habib,³[†] Lei Wang,⁴ Bo Wen,^{1,8} Yuanda Gao,⁵ Takashi Taniguchi,⁶ Kenji Watanabe,⁶ James Hone,⁵ Avik W. Ghosh,³ Cory R. Dean¹[‡]

1522 30 SEPTEMBER 2016 • VOL 353 ISSUE 6307

Negative refraction and cyclotron focusing

III) Andreev reflection at graphene/ superconductor interface

Andreev reflection at NS interface

Andreev reflection in standard metals

Retro-reflection (with a tiny mismatch angle)

Andreev reflection in a Dirac cone (2 bands)

Andreev reflection in a Dirac cone

Andreev-Dirac reflection : intraband case

 $E < E_F$

The hole also belongs to the conduction band

Intraband AR Ret-reflection

 k_x

Andreev-Dirac reflection : intraband case

Retro-reflection (with a tiny mismatch angle)

Andreev-Dirac reflection : interband case

Andreev-Dirac reflection : interband case

Interband

Specular-reflection (with a tiny mismatch angle)

nature physics

erband Andreev reflections at van der faces between graphene and NbSe₂

², C. Handschin¹, K. B. Efetov^{3,4}, J. Shuang⁵, R. Cava⁵, T. Taniguchi⁶, ², C. R. Dean¹ and P. Kim^{1*}

Bilayer Graphene

Internal degrees of freedom

Veselago lensing is useful because it allows focusing by a planar interface, but at this stage it is spin/chirality insensitive

In devices using electronic optics, it would be interesting to design lenses that **focus a specific eigenvalue** of spin or chirality.

Chirality?

IV) Veselago lensing in 3D Weyl semi-metals

S. Tchoumakov, J. Cayssol, and A.G. Grushin, PRB 105, 075309 (2022)

Chirality filtering

First idea : shifting the Weyl nodes in momentum space

3D Veselago lensing

Recipe : Replace graphene by a 3D Weyl/Dirac semimetal

3 Issues :

1) Large carrier density but hard to tune it by gating

2) Bad interfaces because 2 different materials (disorder)

3) Insensitivity to internal degree of freedom : spin or chirality

Solution :

Use **the chiral anomaly** to create selectively a pn junction for one chirality only

Chirality of a Weyl fermion

Chirality : projection of spin along momentum

$$H_R = v\sigma \cdot (\mathbf{p} - \mathbf{K})$$

$$H_L = -v\sigma \cdot (\mathbf{p} + \mathbf{K})$$

Positive chirality

Negative chirality

Total chirality is zero : even number of Weyl nodes (Nielsen-Ninomiya)

Chiral anomaly

Simplest case : two Weyl nodes of opposite chiralities

Landau levels (3D)

Nielsen-Ninomiya (1983)

Effect of B : disperse along the B field direction only

Effect of E : push/pump electrons from one node to the other

Interface and chiral anomaly

$$\Delta n = \frac{\tau e^2}{2\pi^2 \hbar^2} \mathbf{E} \cdot \mathbf{B}$$

Interface : two Weyl nodes of opposite chiralities Magnetic field is applied homogeneously Same material (clean interface)

pn junction when the magnetic field exceeds a critical value (of order 1 Tesla)

Interface and chiral anomaly

pn junction : the red chirality is Veselago focused by the interface

nn' junction : the blue chirality is not

Polarizability and STM experiments

$$\Pi(z, z') = -\frac{1}{2\pi} \int d\omega \operatorname{Tr} \left[\hat{G}(z, z') \hat{G}(z', z) \right]$$

Polarizability results

np junction

Formation of a (charge) image

Conclusion

Veselago effect allows focalisation of a beam by a single flat interface between materials with « opposite » dispersions. This is implemented by pn junctions in Dirac materials

Graphene and Weyl : Zero gap allows transparent interfaces

Those pn junctions can be created either by :

- electrostatic doping (2D)
- the chiral anomaly pumping. In this case, the focusing is also chirality sensitive

Nonlocal transport

Magnetic field applied homogeneously and beyond a critical field (necessary to generate the pn junction)

Voltage only on one side of the junction

Nonlocal conductivity

$$\sigma_{\mu\nu}(z,z') = \int \frac{dS_z dS_{z'}}{\pi \mathcal{A}} \operatorname{Tr} \left[\hat{j}_{\mu} \operatorname{Im} \hat{G}(z,z') \hat{j}_{\nu} \operatorname{Im} \hat{G}(z,z') \right]$$

Quantum interference and Klein tunnelling in graphene heterojunctions

Andrea F. Young and Philip Kim*