Topologie avec des fluides quantiques de lumière (polaritons de cavité)

Jacqueline Bloch

Centre de Nanosciences et de Nanotechnologies C2N, Université Paris Saclay - CNRS Palaiseau

Alberto Amo

Driven dissipative polariton lattices

Use of nanotechnology to emulate different Hamiltonians with lattices of coupled resonators

Incoherent drive

Microcavity polaritons

Microcavity polaritons

Probing polariton states

$$\mathbf{k}_{\prime\prime} = \omega/c \sin(\theta)$$

Imaging of real space

Imaging of k-space

Lattices of coupled micropillars

Building block

Lattices of coupled micropillars

C. Ciuti & I. Carusotto, Rev. Mod. Phys. **85**, 299 (2013) Compte Rendus Physique Vol. 17, Issue 8, Pages 805-956 (2016) Physique des polaritons: Edité par A. Amo, J. Bloch and I. Carusotto

Polariton honeycomb lattice

Jacqmin et al., PRL 112, 116402 (2014)

Topological properties of Dirac cones

Topological charge: Winding number

K'-1

 q_x

K:1

 q_{v}

Ψ

ω-Number of times phase of the wave function winds around the Dirac cone

ω

 $rac{1}{2 \pi}$ $\oint \partial_{q} \boldsymbol{\phi}(\boldsymbol{q}) \cdot \boldsymbol{d}\boldsymbol{q}$

Uniaxial strain in graphene

Montambaux G. et al., Phys. Rev. B 80, 153412 (2009)

Artificial graphene: topological phase transition

Rechtsman et al., Phys. Rev. Lett, 111, 103901 (2013) Noh et al., Nature Physics, 13, 6 (2017).

Microwave resonators

Bellec et al., Phys. Rev. Lett, 3, 033902 (2013)

Cold atoms

Tarruell et al., Nature, 483, 7389 (2012)

Strain engineering with micropillars

Strain engineering with micropillars

 $\beta = t_2/t_1$ β**=**1 **β=1** β=2 β**=**0.7 β=3 β=0.5 t_2 β=0.4 β=3.5 β=0.3 **β=4**

Merging of +1 and -1 Dirac

Semi-Dirac Transport and Anisotropic Localization in Polariton Honeycomb Lattices, B. Real, G. Montambaux, et al., Physical Review Letters **125** 186601 (2020)

Anisotropic transport of semi-Dirac polaritons

Semi-Dirac Transport and Anisotropic Localization in Polariton Honeycomb Lattices, B. Real, G. Montambaux, et al., Physical Review Letters **125** 186601 (2020)

Anisotropic transport of semi-Dirac polaritons

Semi-Dirac Transport and Anisotropic Localization in Polariton Honeycomb Lattices, B. Real, G. Montambaux, et al., Physical Review Letters **125** 186601 (2020)

A new playground for Gilles : the p-

bands!!!!

Orbital bands

Type-III and Tilted Dirac Cones Emerging from Flat Bands in Photonic Orbital Graphene; M. Milićević, G. Montambaux et al., Phys. Rev. X 9, 031010 (2019)

Orbital graphene

k_√/(2π/3√3a)

Wu, D. Bergman, L. Balents, and S. Das Sarma, Phys. Rev. Lett. 99, 070401 (2007)

Featured in Physics

Type-III and Tilted Dirac Cones Emerging from Flat Bands in Photonic Orbital Graphene

M. Milićević,¹ G. Montambaux,² T. Ozawa,³ O. Jamadi,⁴ B. Real,⁴ I. Sagnes,¹ A. Lemaître,¹ L. Le Gratiet,¹ A. Harouri,¹ J. Bloch,¹ and A. Amo⁴

Manipulation of P bands

Type-III and Tilted Dirac Cones Emerging from Flat Bands in Photonic Orbital Graphene; M. Milićević, G. Montambaux et al., Phys. Rev. X 9, 031010 (2019)

Manipulation of P bands

Type-III and Tilted Dirac Cones Emerging from Flat Bands in Photonic Orbital Graphene; M. Milićević, G. Montambaux et al., Phys. Rev. X 9, 031010 (2019)

Two types of merging of Dirac points

Two types of merging of Dirac points

PHYSICAL REVIEW LETTERS 121, 256402 (2018)

Winding Vector: How to Annihilate Two Dirac Points with the Same Charge

Gilles Montambaux,¹ Lih-King Lim,^{2,3,*} Jean-Noël Fuchs,^{1,4} and Frédéric Piéchon¹ ¹Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France ²Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China ³Institute for Advanced Study, Tsinghua University, Beijing 100084, People's Republic of China ⁴Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75005 Paris, France

(Received 11 April 2018; published 18 December 2018)

Both kinds of merging are observed in orbital photonic graphene

G. Montambaux et al, Phys. Rev. Lett. 121, 256402 (2018) Duplantier et al, Dirac Matter, Birkauser (2017)

Manipulation of P bands: type III Dirac

Type-III and Tilted Dirac Cones Emerging from Flat Bands in Photonic Orbital Graphene; M. Milićević, G. Montambaux et al., Phys. Rev. X 9, 031010 (2019)

Polariton honeycomb lattice: edges

Polariton honeycomb lattice: edges

Milicevic et al, 2D Mater. 2, 034012 (2015)

PHYSICAL REVIEW B 84, 195452 (2011)

Zak phase and the existence of edge states in graphene

P. Delplace

Département de Physique Théorique, Université de Genève, CH-1211 Genève, Switzerland

D. Ullmo

Laboratoire de Physique Théorique et Modèles Statistiques, CNRS UMR 8626, Univ. Paris-Sud, F-91405 Orsay Cedex, France

G. Montambaux

Laboratoire de Physique des Solides, CNRS UMR 8502, Univ. Paris-Sud, F-91405 Orsay Cedex, France (Received 22 September 2011; revised manuscript received 30 October 2011; published 23 November 2011)

Graphene

$$H\left(\vec{k}\right) = \begin{bmatrix} 0 & t + 2t\cos\left(\frac{\sqrt{3}}{2}a\,k_x\right)e^{\left(i\frac{3}{2}a\,k_y\right)} \\ t + 2t\cos\left(\frac{\sqrt{3}}{2}a\,k_x\right)e^{\left(-i\frac{3}{2}a\,k_y\right)} & 0 \end{bmatrix}$$

SSH

$$H(k) = \begin{bmatrix} 0 & t+t' e^{(+ika)} \\ t+t' e^{(-ika)} & 0 \end{bmatrix}$$

Correspondance:

$$t_{SSH} \rightarrow t$$
 $t'_{SSH} \rightarrow 2t \cos\left(\frac{\sqrt{3}}{2}ak_x\right)$
intra-cell inter-cell

Conditions for edge states in graphene (bearded)

$$t'_{SSH} \rightarrow t \qquad t'_{SSH} \rightarrow 2t \cos\left(\frac{\sqrt{3}}{2}ak_x\right)$$

intra-cell
$$2t \cos\left(\frac{\sqrt{3}}{2}ak_x\right) > t \rightarrow |k_x| < \frac{2\pi}{3\sqrt{3}a}$$

Experimental measurements of the topological invariants of graphene

P. St-Jean et al., Phys. Rev. Lett. 126, 127403 (2021)

Gilles, what about p-band edge states?

Orbital Edge States in a Photonic Honeycomb Lattice M. Milićević, T. Ozawa, G. Montambaux, et al., Phys. Rev. Lett. 118, 107403 (2017)

Gilles, what about p-band edge states?

$$\hat{\mathcal{H}}_p = -t_L \begin{pmatrix} 0_{2\times 2} & Q^{\dagger} \\ Q & 0_{2\times 2} \end{pmatrix}$$

$$Q = \begin{pmatrix} f_1 & g \\ g & f_2 \end{pmatrix}$$
$$f_1 = \frac{3}{4} (e^{i\mathbf{k} \cdot \mathbf{u}_1} + e^{i\mathbf{k} \cdot \mathbf{u}_2})$$

$$f_1 = \frac{3}{4} (e^{i\mathbf{k}\cdot\mathbf{u}_1} + e^{i\mathbf{k}\cdot\mathbf{u}_2})$$

$$f_2 = 1 + \frac{1}{4} (e^{i\mathbf{k}\cdot\mathbf{u}_1} + e^{i\mathbf{k}\cdot\mathbf{u}_2})$$

$$g = (\sqrt{3}/4)(e^{i\mathbf{k}\cdot\mathbf{u}_1} - e^{i\mathbf{k}\cdot\mathbf{u}_2})$$

$$f_p \equiv \det Q = |\det Q| e^{i\phi(\mathbf{k})}$$

Winding of f(k) => number of edge states

Orbital Edge States in a Photonic Honeycomb Lattice M. Milićević, T. Ozawa, G. Montambaux, et al., Phys. Rev. Lett. 118, 107403 (2017)

$$f_p(\text{zigzag}) = \frac{3}{4}e^{i\mathbf{k}\cdot(\mathbf{a}_1 - \mathbf{a}_2)}f_s(\text{bearded})$$
$$f_p(\text{bearded}) = \frac{3}{4}e^{i\mathbf{k}\cdot\mathbf{a}_2}f_s(\text{zigzag}),$$

$$f_p(\text{zigzag}) = \frac{3}{4} e^{i\mathbf{k} \cdot (\mathbf{a}_1 - \mathbf{a}_2)} f_s(\text{bearded})$$

$$f_p(\text{bearded}) = \frac{3}{4}e^{i\mathbf{k}\cdot\mathbf{a}_2}f_s(\text{zigzag}),$$

Gilles, what about p-band edge states?

Zigzag edges

Bearded edges

Armchair edges

Orbital Edge States in a Photonic Honeycomb Lattice M. Milićević, T. Ozawa, G. Montambaux, et al., Phys. Rev. Lett. 118, 107403 (2017)

Excitons provide gain

St-Jean et al., Nature Photonics 11, 651 (2017)

Sala *et al.*, Phys. Rev. X **5**, 011034 (2015)

N Carlon Zambon et al., Nature Photonics 13, 283 (2019)

Excitons provide huge Kerr nonlinearity : driven topology

N. Pernet et al., Nature Physics18, 678 (2022)

Soon a new problem for Gilles!!!

Polariton topological insulator: s and p bands!

Exciton: Zeeman splitting

Photon: spin orbit coupling

Nalitov, et al., Physical Review Letters **114**, 116401 (2015) Bardyn et al., Physical Review B **91**, 161413(R) (2015) S. Klembt et al. Nature 562, 552 (2018)

Acknowledgements

Group picture (2020):

OmarJamadi

Bastian Real

Left to right: I. Sagnes, L. le Gratiet, Q. Fontaine, P. St-Jean, N. Carlon-Zambon, M. Guillot, J. Bloch, S. Ravets, N. Pernet, M. Morassi, A. Lemaître.

SIR

*** île**de**France**

lacopo Carusotto Trento

NanoSaclay

Tomoki Ozawa (Riken iThems)

Marijana Milicevic

